Chapter 1 :

Real numbers_

Motivation.

The Babylonians show that if A is a square of side unity and B a square of side equal to the diagonal d of A, then the area of B is double that of A, in other words: $d^2 = 2$. Afterwards, the Pythagoreans showed that d (which is equal to $\sqrt{2}$) is not a rational number. That is to say, we cannot write $\sqrt{2}$ in the form $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. So, we will need another set containing \mathbb{Q} , as well as the solutions of the algebraic equations.

" Real numbers are used to represent any physical measurement such as: the price of a product, the time between two events, the altitude of a geographic site, the mass of an atom or the distance of the nearest galaxy. These measurements depend on the choice of a unit of measurement, and the result is expressed as the product of a real number by a unit.". **(Wikipedia Encyclopedia)**

Properties.

The order relation \leq is compatible with the operations + et \times , i.e. for $a, b, c, d \in \mathbb{R}$ we have:

1) $a \le b$ and $c \le d \Longrightarrow a + c \le b + d$. 2) $a \le b$ and $c \ge 0 \Longrightarrow a \times c \le b \times c$. 3) $a + c \le b + c \Longrightarrow a \le b$. 4) $a \le b$ and $b \le c \Longrightarrow a \le c$. 5) $a \le b \Longrightarrow b - a \in \mathbb{R}_+$, $a \le b$ and $b \le a \Longrightarrow a = b$. 6) $0 < a \le b \iff 0 < \frac{1}{b} \le \frac{1}{a}$ and $0 < a \le b \iff 0 < a^n \le b^n$, $\forall n \in \mathbb{N}^*$.

1.2. Decimal representation and density

Definition 2. (Decimal representation - Ecriture décimale) Decimal representation is the expansion in base 10 of a positive real number, given by: $x = c_n 10^n + \dots + c_1 10 + c_0 + d_1 \frac{1}{10} + \dots + d_m \frac{1}{10^m} + \dots$ $= \sum_{k=0}^n c_k 10^k + \sum_{i=1}^{+\infty} \frac{d_i}{10^i}$ with $c_n, \dots, c_1, c_0, d_1, \dots, d_n \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, they are called "digits".

We write $x = c_n \dots c_1 c_0$, $d_1 \dots d_m \dots$

Remark. We can consider another base of development other than 10, for example: base 2 (binary), base 8 (octal), base 16 (hexadecimal), base *p* (*p*-adic).

Examples.

1) For x = 125,3269, we have

$$125,3269 = 1.10^2 + 2.10 + 5 + 3.\frac{1}{10} + 2.\frac{1}{10^2} + 6.\frac{1}{10^3} + 9.\frac{1}{10^4}$$

2) For x = 80764, we have

$$80764 = 8.10^4 + 0.10^3 + 7.10^2 + 6.10 + 4 + 0.\frac{1}{10} + 0.\frac{1}{10^2} + \cdots$$

Proposition 1.

A number is rational if and only if its decimal expansion is periodic or finite.

Examples.

1) For
$$x = \frac{1253269}{10000}$$
, we have

$$\frac{1253269}{10000} = 125,3369 = 1.10^{2} + 2.10 + 5 + 3.\frac{1}{10} + 2.\frac{1}{10^{2}} + 6.\frac{1}{10^{3}} + 9.\frac{1}{10^{4}}$$
2) For $x = \frac{78}{7}$, we have

$$\frac{78}{7} = 11,142857142857142857142857 = 11,\overline{142857}$$

$$= 1.10 + 1 + 1.\frac{1}{10} + 4.\frac{1}{10^{2}} + 2.\frac{1}{10^{3}} + 8.\frac{1}{10^{4}} + 5.\frac{1}{10^{5}} + 7.\frac{1}{10^{6}} + \dots$$
3) For $x = \frac{1}{3}$, we have

$$\frac{1}{3} = 0,3333333 = 0 + 3.\frac{1}{10} + 3.\frac{1}{10^{2}} + 3.\frac{1}{10^{3}} + \dots$$
Theorem 2. (Density of \mathbb{Q} - Densité de \mathbb{Q})
The set \mathbb{Q} is dense in \mathbb{R} , i.e.
 $\forall x, y \in \mathbb{R}$ with $x < y, \exists q \in \mathbb{Q}$: $x < q < y$

Definition 3. (Irrational numbers)

Irrational numbers are numbers that are not rational. We denote the set of irrationals by $\mathbb{R} \setminus \mathbb{Q}$ or \mathbb{Q}^c .

Example. The numbers $\sqrt{2}$, π , e , ...are irrational numbers.

1.3. integer part et absolute value

Definitions 4. (Interger part and fractional part)

- The integer part of a real number x is the largest integer $r \in \mathbb{Z}$ such as : $r \leq x$.
- We denote the integer part by E(x) or [x], so we have : $E(x) \le x < E(x) + 1$.
- In the decimal representation of x the integer part is equal to : $[x] = c_n \dots c_1 c_0$.
- The fractional part, denoted {*x*}, is given by :

$$\{x\} = 0, d_1 d_2 \dots d_m \dots$$

• We have: $x = [x] + \{x\}$ and $\{x\} = x - [x]$.

Examples.

1) For
$$x = \frac{1253269}{10000} = 125,3269$$
, we have : $[x] = 125$, $\{x\} = 0,3269$.

- **2)** For x = 2023, we have : [x] = 2023 = x, $\{x\} = 0$.
- **4)** For x = -5,86, we have : [x] = -6, $\{x\} = 0,86$.
- **5)** If E(x) = 2 then $2 \le x < 3$.

Remark. There is another integer part called "**superior**", denoted [x], defined by:

 $[x] - 1 < x \le [x]$

In this case, the integer part [x] is called the "**lower** integer part", denoted [x].

Proposition 2.

Let $x, y \in \mathbb{R}$. We have the following properties :

1) For
$$\in \mathbb{Z}$$
: $E(x + n) = E(x) + n$.
2) $E(x) + E(-x) = \begin{cases} 0 , & \text{if } x \in \mathbb{Z} \\ & \text{if } x \in \mathbb{Z} \\ -1 , & \text{Otherwise} \end{cases}$
3) $E(x) + E(y) \le E(x + y) \le E(x) + E(y) + 1$.
4) For $\in \mathbb{N}^*$: $nE(x) \le E(nx) \le nE(x) + n - 1$

Proof.

We will prove the last property. In fact, we have:

$$E(x) \le x < E(x) + 1 \implies nE(x) \le nx < nE(x) + n$$

So: $nE(x) \le E(nx) \le nx \le E(nx) + 1 < nE(x) + n$

Definition 5. (Valeur absolue – absolute value)

The absolute value, denoted |x|, is defined by :

 $|x| = \begin{cases} x & \text{, si } x \ge 0 \\ -x & \text{, si } x < 0 \end{cases}$

Proposition 3.

Let $x, y \in \mathbb{R}$, We have the following properties :

- **1)** $|x| = 0 \iff x = 0$, |x| = |-x| , $|x| = \sqrt{x^2}$.
- **2)** For $\in \mathbb{R}^*$: $|x| \le a \Leftrightarrow -a \le x \le a$.
- **3)** The triangular inequality : $|x + y| \le |x| + |y|$.
- **4)** Generalization : $|\sum_{i=1}^{n} x_i| \le \sum_{i=1}^{n} |x_i|$
- **5)** |xy| = |x||y|.
- 6) $||x| |y|| \le |x + y|$, $||x| |y|| \le |x y|$

Proof.

We will prove the triangular inequality. In fact we have : $-|x| \le x \le |x|$ and $-|y| \le x \le |y|$ We add up the inequalities, we find : $-(|x| + |y|) \le x + y \le |x| + |y|$ So $|x + y| \le |x| + |y|$.

Remarks.

- **1)** $[a, a] = \{a\},]a, a[= \emptyset.$
- **2)** The length of the interval [a, b] equal to b a. The center of this interval is the point $\frac{a+b}{2}$.
- 3) The intersection of intervals \mathbb{R} is always an interval. The union of intervals \mathbb{R} is not always an interval .

Definition 7. (Droite réelle achevée - Extended real number line)

The Extended real number line denoted $\overline{\mathbb{R}}$ is defined by : $]-\infty, +\infty[=\overline{\mathbb{R}}]$

Operations on $\overline{\mathbb{R}}$. For every $x \in \mathbb{R}$, we have :

$$\begin{array}{l}\checkmark x + (+\infty) = +\infty , \quad x + (-\infty) = -\infty. \\ \checkmark +\infty + (+\infty) = +\infty , \quad -\infty + (-\infty) = -\infty. \\ \checkmark x \times (+\infty) = +\infty , \quad x > 0 \quad \text{and} \quad x \times (+\infty) = -\infty , \quad x < 0. \\ \checkmark x \times (-\infty) = -\infty , \quad x > 0 \quad \text{and} \quad x \times (-\infty) = +\infty , \quad x > 0. \\ \checkmark +\infty \times (+\infty) = +\infty , \quad -\infty \times (-\infty) = -\infty , \quad +\infty \times (-\infty) = -\infty. \\ \checkmark \text{ Indeterminate forms:} \quad 0 \times (\pm\infty) , \quad +\infty + (-\infty). \end{array}$$

1.5. Upper bound and lower bound

Definitions 8. (Majorant, minorant – Upper and lower bounds)

Let $A \subset \mathbb{R}$ and $M, m \in \mathbb{R}$.

- We say that *M* is a *majorant* of *A* if : $\forall a \in A$, $a \leq M$. In this case we say that A is bounded from above or majorized.
- We say that *m* is a *minorant* of *A* if : $\forall a \in A$, $a \ge m$. In this case we say that *A* is bounded from below or minorized.
- We say that *A* is **bounded** if it is majorized and minorized.

Examples.

- **1)** Let A = [1, 3], the numbers: $3, \frac{9}{2}$, $\sqrt{21}$ are upper bounds of A. The numbers: 1, 0, -1000 are lower bounds of A. In this case, the interval [1, 3] is bounded.
- **2)** Let $B =]-\infty, 2]$, the numbers: 2, π , 2023 are upper bounds of *B*. There are no lower bounds of *B* (is not minorized, therefore is not bounded).
- **3)** Let $C = \{x \in \mathbb{R} \setminus \sqrt{x} \le 2\}$, the numbers: 4, $\sqrt{5}$, 2050 are upper bounds of *C*. The numbers: $-1, 0, -\sqrt{1000}$ are lower bounds of *C*. In this case, the set *C* is bounded.
- **4)** Attention ! For $A = [0, 1[\cup \{5\}]$, the numbers: 3, 4, $\frac{9}{2}$ are not upper bounds of A.

Definitions 9. (Maximum, minimum)

Let $A \subset \mathbb{R}$ and $M, m \in \mathbb{R}$.

- We say that M is the *largest element* of A if: $\forall a \in A$, $a \leq M$ and $M \in A$. It is called the *maximum* and is noted **max** *A*.
- We say that *m* is the *smallest element* of *A* if: $\forall a \in A$, $a \ge m$ and $m \in A$. It is called the *minimum* and is noted **min** *A*.

Remark. The maximum and the minimum do not always exist. If they exist, they are unique.

Examples.

- **1)** For $A_1 = [1, 3]$, we have 3 is the largest element of A_1 , then max $A_1 = 3$. The number 1 is the smallest element of A_1 , then min $A_1 = 1$.
- **2)** For $A_2 = [1, 3]$, we have $3 \notin A_2$, then max A_2 does not exist. The number 1 remains the min A_2 .
- **3)** For $A_3 = [-\infty, 2]$, we have max $A_3 = 2$, the min A_3 does not exist (A_3 is not bounded).
- **4)** That is $A_4 = \{x \in \mathbb{R} \setminus \sqrt{x} \le 2\}$, we have max $A_4 = 4$ and min $A_4 = 0$.

Definitions 10. (Supremum, infimum)

- If A is a majorized part of ℝ, we call the smallest of the upper bounds of A a
 « supremum » of A. We note it sup A.
- If A is a minorized part of ℝ, we call the largest of the lower bounds of A a « *infimum* » of A. We note it inf A.

Remarks.

- **1)** If the upper bound and the lower bound exist, then they are unique.
- **2)** If the upper bound does not exist, we write : $\sup A = +\infty$. If the lower bound does not exist, we write : $\inf A = -\infty$.
- 3) It is not obligatory that sup *A* and inf *A* belong to *A*.If this is the case, we have: sup *A* = max A and inf *A* = min *A*.

Examples.

- **4)** Let A = [1, 3] we have: sup A = 3 (max A does not exist) and inf $A = \min A = 1$.
- **5)** Let we $B =]-\infty, 2]$ we have: sup $B = \max B = 2$ and $\inf B = -\infty$. (since *B* it is not minorized).
- 6) Let we $C = \{x \in \mathbb{R} \setminus x^2 \le 4\}$ we have: $\sup C = \max C = 2$ and $\inf C = \min C = -2$.
- 7) Let we $D = [0, 1] \cup \{5\}$ we have: sup $D = \max D = 5$ and $\inf D = \min D = 0$.

Theorem 3. (Bolzano)

- Every majorized part of \mathbb{R} has an upper bound in \mathbb{R} .
- Every minorized part of $\mathbb R$ has a lower bound in $\mathbb R$.

Remark. This property is not valid in \mathbb{Q} . For example, the set $A = \{x \in \mathbb{Q} \setminus x^2 < 2\}$ is bounded by $\sqrt{2}$, but the upper bound does not belong to \mathbb{Q} .

Proposition 4. (Characterization of the supremum)

The supremum of *A* is the unique element such that :

$$\sup A = M \Leftrightarrow \begin{cases} \mathbf{1} \ \forall a \in A &, \quad a \leq M \\ & \text{if } \\ \mathbf{2} \ \forall \varepsilon > 0, \exists a_0 \in A : M - \varepsilon < a_0 \end{cases}$$

Proposition 5. (Characterization of the infimum)

The infimum of *A* is the unique element such that :

$$\inf A = m \Leftrightarrow \begin{cases} \mathbf{1} \ \forall a \in A &, \quad a \ge m \\ & & \text{if } \\ \mathbf{2} \ \forall \varepsilon > 0, \exists a_1 \in A : m + \varepsilon > a_1 \end{cases}$$

Example.

Let the set $A = \{x_n = 1 - \frac{1}{n} \setminus n \in \mathbb{N}^*\}$. We have: min A = 0 and max A does not exist. So :

- $\inf A = \min A = 0.$
- We will show that $\sup A = 1$. In fact, we have $x_n < 1$, $\forall n \in \mathbb{N}^*$. On the other hand, we must show that:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}^* \ (a_0 = x_N \in A) : \quad 1 - \varepsilon < 1 - \frac{1}{N}$$

That is to say $\frac{1}{\varepsilon} < N$. So, just choose $N = \left[\frac{1}{\varepsilon}\right] + 1$.

Example.

Let the set $B = \left\{ b_n = \frac{n+1}{2n+1} \setminus n \in \mathbb{N} \right\}$. For every $n \in \mathbb{N}$, we have: $\frac{1}{2} \le \frac{n+1}{2n+1} \le 1$.

- Then, ¹/₂ is a lower bound and 1 is an upper bound of *B*. So, the part *B* is bounded, hence inf *B* and sup *B* exist (according to Bolzano's theorem).
- We observe that $b_0 = 1$. So, $\sup B = \max B = 1$.
- We will show that $\inf B = \frac{1}{2}$. We have $\frac{1}{2} \le b_n$, $\forall n \in \mathbb{N}^*$. On the other hand, we must show that:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}^* (a_0 = b_N \in A) : \frac{n+1}{2n+1} < \frac{1}{2} + \varepsilon$$

That is to say : $\frac{1-\varepsilon}{2\varepsilon} < N$. So, just choose $N = \left[\frac{1-\varepsilon}{2\varepsilon}\right] + 1$.

References.

- 1) H. Benhassine . The real right completed . MI course, University of Jijel, 2021.
- 2) D. Fredon and others. *Mathematics, Analysis in 30 sheets*. Dunod, France, 2009.
- 3) A. Giroux. Analysis, Course notes . University of Montreal, Canada, 2009.
- 4) J. Kaczor and T. Nowak . Analysis Problems I. EDP Sciences, France, 2008.