Chapter 1

Real numbers

Motivation

The Babylonians show that if A is a square of side unity and B a square of side equal to the diagonal d of A, then the area of B is double that of A, in other words: $d^{2}=2$. Afterwards, the Pythagoreans showed that d (which is equal to $\sqrt{2}$) is not a rational number. That is to say, we cannot write $\sqrt{2}$ in the form $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. So, we will need another set containing \mathbb{Q}, as well as the solutions of the algebraic equations.
" Real numbers are used to represent any physical measurement such as: the price of a product, the time between two events, the altitude of a geographic site, the mass of an atom or the distance of the nearest galaxy. These measurements depend on the choice of a unit of measurement, and the result is expressed as the product of a real number by a unit. ". (Wikipedia Encyclopedia)
+++

1.1. Definitions and properties

Reminder.

- The set of natural numbers :
- The set of integers :
- The set of rational numbers : $\mathbb{Q}=\left\{\frac{p}{q} \backslash p, q \in \mathbb{Z}, q \neq 0\right\}$.

Definition 1.

The set of real numbers, denoted \mathbb{R}, is the complement of the set of rational numbers \mathbb{Q}. It is an ordered commutative field equipped with the operations,$+ \times$.

Properties,

The order relation \leq is compatible with the operations + et \times, i.e. for $a, b, c, d \in \mathbb{R}$ we have:

1) $a \leq b$ and $c \leq d \Rightarrow a+c \leq b+d$.
2) $a \leq b$ and $c \geq 0 \Rightarrow a \times c \leq b \times c$.
3) $a+c \leq b+c \Rightarrow a \leq b$.
4) $a \leq b$ and $b \leq c \Rightarrow a \leq c$.
5) $a \leq b \Rightarrow b-a \in \mathbb{R}_{+} \quad, \quad a \leq b$ and $b \leq a \Rightarrow a=b$.
6) $0<a \leq b \Leftrightarrow 0<\frac{1}{b} \leq \frac{1}{a} \quad$ and $\quad 0<a \leq b \Leftrightarrow 0<a^{n} \leq b^{n}, \quad \forall n \in \mathbb{N}^{*}$.

Theorem 1. (Property of Archimedes)

The field \mathbb{R} is Archimedean, i.e.

$$
\forall x \in \mathbb{R}, \exists n \in \mathbb{N}: \quad n>x
$$

$+++$

1.2. Decimal representation and density

Definition 2. (Decimal representation - Ecriture décimale)

Decimal representation is the expansion in base 10 of a positive real number, given by:

$$
\begin{aligned}
x=c_{n} 10^{n}+\cdots & +c_{1} 10+c_{0}+d_{1} \frac{1}{10}+\cdots+d_{m} \frac{1}{10^{m}}+\cdots \\
& =\sum_{k=0}^{n} c_{k} 10^{k}+\sum_{i=1}^{+\infty} \frac{d_{i}}{10^{i}}
\end{aligned}
$$

with $c_{n}, \ldots, c_{1}, c_{0}, d_{1}, \ldots, d_{n} \in\{0,1,2,3,4,5,6,7,8,9\}$, they are called "digits".
We write $\quad x=c_{n} \ldots c_{1} c_{0}, d_{1} \ldots d_{m} \ldots$

Remark. We can consider another base of development other than 10, for example:
base 2 (binary), base 8 (octal), base 16 (hexadecimal), base p (p-adic).

Examples.

1) For $x=125,3269$, we have

$$
125,3269=1 \cdot 10^{2}+2 \cdot 10+5+3 \cdot \frac{1}{10}+2 \cdot \frac{1}{10^{2}}+6 \cdot \frac{1}{10^{3}}+9 \cdot \frac{1}{10^{4}}
$$

2) For $x=80764$, we have

$$
80764=8.10^{4}+0.10^{3}+7 \cdot 10^{2}+6.10+4+0 \cdot \frac{1}{10}+0 \cdot \frac{1}{10^{2}}+\cdots
$$

Proposition 1.

A number is rational if and only if its decimal expansion is periodic or finite.

Examples.

1) For $x=\frac{1253269}{10000}$, we have

$$
\frac{1253269}{10000}=125,3369=1 \cdot 10^{2}+2 \cdot 10+5+3 \cdot \frac{1}{10}+2 \cdot \frac{1}{10^{2}}+6 \cdot \frac{1}{10^{3}}+9 \cdot \frac{1}{10^{4}}
$$

2) For $x=\frac{78}{7}$, we have

$$
\begin{array}{r}
\frac{78}{7}=11,142857142857142857142857=11, \overline{142857} \\
=1.10+1+1 \cdot \frac{1}{10}+4 \cdot \frac{1}{10^{2}}+2 \cdot \frac{1}{10^{3}}+8 \cdot \frac{1}{10^{4}}+5 \cdot \frac{1}{10^{5}}+7 \cdot \frac{1}{10^{6}}+
\end{array}
$$

3) For $x=\frac{1}{3}$, we have

$$
\frac{1}{3}=0,33333333=0+3 \cdot \frac{1}{10}+3 \cdot \frac{1}{10^{2}}+3 \cdot \frac{1}{10^{3}}+
$$

Theorem 2. (Density of \mathbb{Q} - Densité de \mathbb{Q})
The set \mathbb{Q} is dense in \mathbb{R}, i.e.

$$
\forall x, y \in \mathbb{R} \text { with } x<y, \exists q \in \mathbb{Q}: \quad x<q<y
$$

Definition 3. (Irrational numbers)
Irrational numbers are numbers that are not rational. We denote the set of irrationals by $\mathbb{R} \backslash \mathbb{Q}$ or \mathbb{Q}^{c}.

Example. The numbers $\sqrt{2}, \pi, e, \ldots$ are irrational numbers.

1.3. integer part et absolute value

Definitions 4. (Interger part and fractional part)

- The integer part of a real number x is the largest integer $r \in \mathbb{Z}$ such as : $r \leq x$.
- We denote the integer part by $E(x)$ or $[x]$, so we have : $E(x) \leq x<E(x)+1$.
- In the decimal representation of x the integer part is equal to : $[x]=c_{n} \ldots c_{1} c_{0}$.
- The fractional part, denoted $\{x\}$, is given by :

$$
\{x\}=0, d_{1} d_{2} \ldots d_{m} \ldots
$$

- We have: $\quad x=[x]+\{x\}$ and $\{x\}=x-[x]$.

Examples.

1) For $x=\frac{1253269}{10000}=125,3269$, we have: $[x]=125,\{x\}=0,3269$.
2) For $x=2023$, we have: $\quad[x]=2023=x,\{x\}=0$.
3) For $x=\frac{1}{3}=0.3333333$, we have: $[x]=0,\{x\}=0,33333333$.
4) For $x=-5,86$, we have: $[x]=-6,\{x\}=0,86$.
5) If $E(x)=2$ then $2 \leq x<3$.

Remark. There is another integer part called "superior", denoted $\lceil x\rceil$, defined by:

$$
\lceil x\rceil-1<x \leq\lceil x\rceil
$$

In this case, the integer part $[x]$ is called the "lower integer part", denoted $\lfloor x\rfloor$.

Proposition 2.

Let $x, y \in \mathbb{R}$. We have the following properties :

1) For $\in \mathbb{Z}: E(x+n)=E(x)+n$.
2) $E(x)+E(-x)=\left\{\begin{aligned} 0 & , \quad \text { if } x \in \mathbb{Z} \\ -1 & , \quad \text { Otherwise }\end{aligned}\right.$.
3) $E(x)+E(y) \leq E(x+y) \leq E(x)+E(y)+1$.
4) For $\in \mathbb{N}^{*}: n E(x) \leq E(n x) \leq n E(x)+n-1$.

Proof.

We will prove the last property. In fact, we have:

$$
E(x) \leq x<E(x)+1 \Rightarrow n E(x) \leq n x<n E(x)+n
$$

So: $n E(x) \leq E(n x) \leq n x \leq E(n x)+1<n E(x)+n$

Definition 5. (Valeur absolue - absolute value)
The absolute value, denoted $|x|$, is defined by :

$$
|x|=\left\{\begin{array}{cc}
x, & \text { si } x \geq 0 \\
-x, & \text { si } x<0
\end{array}\right.
$$

Proposition 3.

Let $x, y \in \mathbb{R}$, We have the following properties :

1) $|x|=0 \Leftrightarrow x=0 \quad, \quad|x|=|-x| \quad,|x|=\sqrt{x^{2}}$.
2) For $\in \mathbb{R}^{*}: \quad|x| \leq a \Leftrightarrow-a \leq x \leq a$.
3) The triangular inequality: $|x+y| \leq|x|+|y|$.
4) Generalization: $\left|\sum_{i=1}^{n} x_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|$
5) $|x y|=|x||y|$.
6) $||x|-|y|| \leq|x+y| \quad, \quad| | x|-|y|| \leq|x-y|$

Proof.

We will prove the triangular inequality. In fact we have: $\quad-|x| \leq x \leq|x|$ and $\quad-|y| \leq x \leq|y|$
We add up the inequalities, we find: $\quad-(|x|+|y|) \leq x+y \leq|x|+|y|$
So $|x+y| \leq|x|+|y|$.

1.4. Intervals and Extended real line

Definitions 6. (Intervalles - Intervals)

Intervals are subsets of \mathbb{R} defined for,$b \in \mathbb{R}$, by :

$$
\begin{array}{ccc}
{[a, b]=\{x \in \mathbb{R} \backslash a \leq x \leq b\}} & ; & {[a, b[=\{x \in \mathbb{R} \backslash a \leq x<b\}} \\
] a, b]=\{x \in \mathbb{R} \backslash a<x \leq b\} & ; &] a, b[=\{x \in \mathbb{R} \backslash a<x<b\} \\
{[a,+\infty[=\{x \in \mathbb{R} \backslash a \leq x\}} & ; &] a,+\infty[=\{x \in \mathbb{R} \backslash a<x\} \\
]-\infty, b]=\{x \in \mathbb{R} \backslash x \leq b\} & ; &]-\infty, b[=\{x \in \mathbb{R} \backslash x<b\} \\
]-\infty,+\infty[=\mathbb{R} ;] 0,+\infty\left[=\mathbb{R}_{+}^{*} ;\right. & {\left[0,+\infty\left[=\mathbb{R}_{+}\right.\right.} \\
]-\infty, 0\left[=\mathbb{R}_{-}^{*}\right. & ; &]-\infty, 0]=\mathbb{R}_{+}
\end{array}
$$

Remarks

1) $[a, a]=\{a\},] a, a[=\varnothing$.
2) The length of the interval $[a, b]$ equal to $b-a$. The center of this interval is the point $\frac{a+b}{2}$.
3) The intersection of intervals \mathbb{R} is always an interval. The union of intervals \mathbb{R} is not always an interval.

Definition 7. (Droite réelle achevée - Extended real number line)
The Extended real number line denoted $\overline{\mathbb{R}}$ is defined by: $\quad]-\infty,+\infty[=\overline{\mathbb{R}}$

Operations on $\overline{\mathbb{R}}$. For every $x \in \mathbb{R}$, we have :
$\checkmark x+(+\infty)=+\infty \quad, \quad x+(-\infty)=-\infty$.
$\checkmark+\infty+(+\infty)=+\infty \quad, \quad-\infty+(-\infty)=-\infty$.
$\checkmark x \times(+\infty)=+\infty, x>0 \quad$ and $\quad x \times(+\infty)=-\infty, x<0$.
$\checkmark x \times(-\infty)=-\infty, x>0 \quad$ and $\quad x \times(-\infty)=+\infty, x>0$.
$\checkmark+\infty \times(+\infty)=+\infty \quad, \quad-\infty \times(-\infty)=-\infty \quad, \quad+\infty \times(-\infty)=-\infty$.
\checkmark Indeterminate forms: $0 \times(\pm \infty), \quad+\infty+(-\infty)$.

1.5. Upper bound and lower bound

Definitions 8. (Majorant, minorant - Upper and lower bounds)
Let $A \subset \mathbb{R}$ and $M, m \in \mathbb{R}$.

- We say that M is a majorant of A if : $\forall a \in A, a \leq M$. In this case we say that A is bounded from above or majorized.
- We say that m is a minorant of A if $: \forall a \in A, a \geq m$. In this case we say that A is bounded from below or minorized.
- We say that A is bounded if it is majorized and minorized.

Examples.

1) Let $A=\left[1,3\left[\right.\right.$, the numbers: $3, \frac{9}{2}, \sqrt{21}$ are upper bounds of A. The numbers: $1,0,-1000$ are lower bounds of A. In this case, the interval $[1,3[$ is bounded
2) Let $B=]-\infty, 2]$, the numbers: $2, \pi, 2023$ are upper bounds of B. There are no lower bounds of B (is not minorized, therefore is not bounded).
3) Let $C=\{x \in \mathbb{R} \backslash \sqrt{x} \leq 2\}$, the numbers: $4, \sqrt{5}, 2050$ are upper bounds of C. The numbers: $-1,0,-\sqrt{1000}$ are lower bounds of C. In this case, the set C is bounded.
4) Attention! For $A=\left[0,1\left[\cup\{5\}\right.\right.$, the numbers: $3,4, \frac{9}{2}$ are not upper bounds of A.

Definitions 9. (Maximum, minimum)

Let $A \subset \mathbb{R}$ and $M, m \in \mathbb{R}$.

- We say that M is the largest element of A if: $\forall a \in A, a \leq M$ and $\quad M \in A$. It is called the maximum and is noted max A.
- We say that m is the smallest element of A if : $\forall a \in A, a \geq m$ and $m \in A$. It is called the minimum and is noted $\min A$.

Remark. The maximum and the minimum do not always exist. If they exist, they are unique.

Examples.

1) For $A_{1}=[1,3]$, we have 3 is the largest element of A_{1}, then max $A_{1}=3$. The number 1 is the smallest element of A_{1}, then $\min A_{1}=1$.
2) For $A_{2}=\left[1,3\left[\right.\right.$, we have $3 \notin A_{2}$, then $\max A_{2}$ does not exist. The number 1 remains the $\min A_{2}$.
3) For $\left.\left.A_{3}=\right]-\infty, 2\right]$, we have $\max A_{3}=2$, the $\min A_{3}$ does not exist (A_{3} is not bounded).
4) That is $A_{4}=\{x \in \mathbb{R} \backslash \sqrt{x} \leq 2\}$, we have $\max A_{4}=4$ and $\min A_{4}=0$.

Definitions 10. (Supremum, infimum)

- If A is a majorized part of \mathbb{R}, we call the smallest of the upper bounds of A a «supremum » of A. We note it $\sup A$.
- If A is a minorized part of \mathbb{R}, we call the largest of the lower bounds of A a «infimum» of A. We note it inf A.

Remarks.

1) If the upper bound and the lower bound exist, then they are unique.
2) If the upper bound does not exist, we write : $\sup A=+\infty$.

If the lower bound does not exist, we write : $\inf A=-\infty$.
3) It is not obligatory that $\sup \boldsymbol{A}$ and $\inf \boldsymbol{A}$ belong to A.

If this is the case, we have: $\sup A=\max A$ and $\inf A=\min A$.

Examples.

4) Let $A=[1,3[$ we have: $\sup A=3(\max A$ does not exist) and $\inf A=\min A=1$.
5) Let we $B=]-\infty, 2$] we have: $\sup B=\max B=2$ and $\inf B=-\infty$. (since B it is not minorized).
6) Let we $C=\left\{x \in \mathbb{R} \backslash x^{2} \leq 4\right\}$ we have: $\sup C=\max C=2$ and $\inf C=\min C=-2$.
7) Let we $D=[0,1[\cup\{5\}$ we have: $\sup D=\max D=5$ and $\inf D=\min D=0$.

Theorem 3. (Bolzano)

- Every majorized part of \mathbb{R} has an upper bound in \mathbb{R}.
- Every minorized part of \mathbb{R} has a lower bound in \mathbb{R}.

Remark. This property is not valid in \mathbb{Q}. For example, the set $A=\left\{x \in \mathbb{Q} \backslash x^{2}<2\right\}$ is bounded by $\sqrt{2}$, but the upper bound does not belong to \mathbb{Q}.

Proposition 4. (Characterization of

The supremum of A is the unique element such that:

$$
\sup A=M \Leftrightarrow\left\{\begin{array}{c}
\text { 1) } \forall a \in A, \quad a \leq M \\
\text { 2) } \forall \varepsilon>0, \exists a_{0} \in A: M-\varepsilon<a_{0}
\end{array}\right.
$$

Proposition 5. (Characterization of

The infimum of A is the unique element such that:

$$
\inf A=m \Leftrightarrow\left\{\begin{array}{c}
\text { 1) } \forall a \in A \quad, \quad a \geq m \\
\text { 2) } \forall \varepsilon>0, \exists a_{1} \in A: m+\varepsilon>a_{1}
\end{array}\right.
$$

Example.

Let the set $A=\left\{x_{n}=1-\frac{1}{n} \backslash n \in \mathbb{N}^{*}\right\}$. We have: $\min A=0$ and max A does not exist. So :

- $\quad \inf A=\min A=0$.
- We will show that $\sup A=1$. In fact, we have $x_{n}<1, \forall n \in \mathbb{N}^{*}$.

On the other hand, we must show that:

$$
\forall \varepsilon>0, \exists N \in \mathbb{N}^{*}\left(a_{0}=x_{N} \in A\right): \quad 1-\varepsilon<1-\frac{1}{N}
$$

That is to say $\frac{1}{\varepsilon}<N$. So, just choose $N=\left[\frac{1}{\varepsilon}\right]+1$.

Example.

Let the set $B=\left\{b_{n}=\frac{n+1}{2 n+1} \backslash n \in \mathbb{N}\right\}$. For every $n \in \mathbb{N}$, we have: $\frac{1}{2} \leq \frac{n+1}{2 n+1} \leq 1$.

- Then, $\frac{1}{2}$ is a lower bound and 1 is an upper bound of B. So, the part B is bounded, hence $\inf B$ and sup B exist (according to Bolzano's theorem).
- We observe that $b_{0}=1$. So, $\sup B=\max B=1$.
- We will show that $\inf B=\frac{1}{2}$. We have $\frac{1}{2} \leq b_{n}, \forall n \in \mathbb{N}^{*}$.

On the other hand, we must show that:

$$
\forall \varepsilon>0, \exists N \in \mathbb{N}^{*}\left(a_{0}=b_{N} \in A\right): \quad \frac{n+1}{2 n+1}<\frac{1}{2}+\varepsilon
$$

That is to say : $\frac{1-\varepsilon}{2 \varepsilon}<N$. So, just choose $N=\left[\frac{1-\varepsilon}{2 \varepsilon}\right]+1$.

References.

1) H. Benhassine . The real right completed. MI course, University of Jijel, 2021.
2) D. Fredon and others. Mathematics, Analysis in 30 sheets . Dunod , France, 2009.
3) A. Giroux. Analysis, Course notes. University of Montreal, Canada, 2009.
4) J. Kaczor and T. Nowak. Analysis Problems I. EDP Sciences, France, 2008.
