Tutorial 3(TD3)

Example 1

The three-phase network 220/380, 50Hz is used to supply, through a single-phase rectifier, a load with an electromotive force (EMF) of E=100V and a resistance of R=50 Ω .

$$v_{1} = v_{m} sin(wt),$$

$$v_{2} = v_{m} sin\left(wt - \frac{2\pi}{3}\right),$$

$$v_{3} = v_{m} sin\left(wt - \frac{4\pi}{3}\right)$$
N
$$v_{1} = v_{m} sin\left(wt - \frac{4\pi}{3}\right)$$
N
$$v_{2} = v_{m} sin\left(wt - \frac{4\pi}{3}\right)$$
N
$$v_{3} = v_{m} sin\left(wt - \frac{4\pi}{3}\right)$$

Draw the curves Uc, V_{D2} , and i_c .

Calculate the average value of the rectified voltage and the average current in the load. Provide the expression, calculate the average value, and plot the current $i_{s2}(t)$. Calculate the power that the network must deliver.

Example 2

A DC motor operating at a constant torque is included in the circuit below

Represent the waveforms of u and u_K as functions of time.

Express the average value of u in terms of V and α .

Illustrate the waveforms of i_K and i_D as functions of time.

Express the average values of currents i_K and i_D in terms of I and $\alpha.$

Determine the current intensity I in the motor as a function of V, E, R, and a.

Numerical application:

Calculate $\langle u \rangle$, I, and $\langle i_D \rangle$ for V = 220 V, E = 145 V, and $\alpha = 0.7$.

Example 3

We consider the parallel chopper circuit shown below, where T is the period, and α is the duty cycle.

 $1.0 \le t \le \alpha T$: When the switch H is conducting. Write the differential equation governing the evolution of i. Assuming $i(0)=I_0$, solve the equation to determine i(t). Provide the expression for $I_1=i(\alpha T)$.

 $2.\alpha T \le t \le T$: When the diode D is conducting. Keeping 0 as the time origin, determine the expression for i(t), particularly in terms of I₀

3. Assuming continuous current operation (*i* does not become zero over the interval [aT,T]).

a) By stating that $i(T)=I_0$, derive the relationship between *E*, *V*, and α .

b) Sketch the shape of i(t). Deduce its average value I_C in terms of I_0 and I_1 .

c) Let $\Delta i = I_1 - I0$. Express Δi in terms of *E*, *L*, α , and *T*.

d) Deduce from the two previous relations the expressions of I_0 and I_1 in terms of I_C and Δi .

e) Application: E=200V, $\alpha=0.25$, L=5mH, $I_C=10A$, T=1ms. Calculate I_0 , I_1 , and V, then plot the waveforms of i, i_H , i_D , and v_H .

