Tutorial 3(TD3)

Example 1

The three-phase network $220 / 380,50 \mathrm{~Hz}$ is used to supply, through a single-phase rectifier, a load with an electromotive force (EMF) of $\mathrm{E}=100 \mathrm{~V}$ and a resistance of $\mathrm{R}=50 \Omega$.

$$
\begin{gathered}
v_{1}=v_{m} \sin (w t) \\
v_{2}=v_{m} \sin \left(w t-\frac{2 \pi}{3}\right) \\
v_{3}=v_{m} \sin \left(w t-\frac{4 \pi}{3}\right)
\end{gathered}
$$

Draw the curves $\mathrm{Uc}, \mathrm{V}_{\mathrm{D} 2}$, and i_{c}.
Calculate the average value of the rectified voltage and the average current in the load.
Provide the expression, calculate the average value, and plot the current $\mathrm{i}_{\mathrm{s} 2}(\mathrm{t})$.
Calculate the power that the network must deliver.

Example 2

A DC motor operating at a constant torque is included in the circuit belou Represent the waveforms of u and u_{K} as functions of time.
Express the average value of u in terms of V and α.
Illustrate the waveforms of i_{K} and i_{D} as functions of time.
Express the average values of currents i_{K} and i_{D} in terms of I and α.

Determine the current intensity I in the motor as a function of V, E, R, anu u.
Numerical application:
Calculate $\left\langle\mathrm{u}>, \mathrm{I}\right.$, and $<\mathrm{i}_{\mathrm{D}}>$ for $\mathrm{V}=220 \mathrm{~V}, \mathrm{E}=145 \mathrm{~V}$, and $\alpha=0.7$.

Example 3

We consider the parallel chopper circuit shown below, where T is the period, and α is the duty cycle.
$1.0 \leq \mathrm{t} \leq \alpha \mathrm{T}$: When the switch H is conducting. Write the differential equation governing the evolution of i. Assuming $i(0)=I_{0}$, solve the equation to determine $i(t)$. Provide the expression for $I_{1}=i(\alpha T)$.
$2 . \alpha \mathrm{T} \leq \mathrm{t} \leq \mathrm{T}$: When the diode D is conducting. Keeping 0 as the time origin, determine the expression for $\mathrm{i}(\mathrm{t})$, particularly in terms of I_{0}

3.Assuming continuous current operation (i does not become zero over the interval $[\alpha T, T]$).
a) By stating that $i(T)=I_{0}$, derive the relationship between E, V, and α.
b) Sketch the shape of $i(t)$. Deduce its average value I_{C} in terms of I_{0} and I_{1}.
c) Let $\Delta i=I_{1}-\mathrm{I} 0$. Express $\Delta \mathrm{i}$ in terms of E, L, α, and T.
d) Deduce from the two previous relations the expressions of I_{0} and I_{1} in terms of I_{C} and Δi.
e) Application: $E=200 \mathrm{~V}, \alpha=0.25, L=5 \mathrm{mH}, I_{C}=10 \mathrm{~A}, T=1 \mathrm{~ms}$. Calculate I_{0}, I_{1}, and V, then plot the waveforms of i, i_{H}, i_{D}, and v_{H}.

