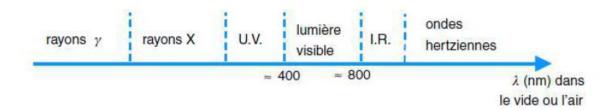
Chapitre IV : Structure électronique de l'atome

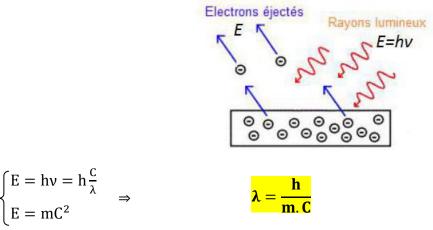
IV.1. Dualité onde-corpuscule

IV.1.1. Aspect ondulatoire de la lumière : onde électromagnétique et spectre


électromagnétique

Les rayons lumineux sont caractérisés par la propagation d'une onde électromagnétique à la vitesse de la lumière ($c=3.10^8$ m/s). Cette onde est caractérisée par sa longueur d'onde λ ou par son nombre d'onde σ :

$$\lambda = \frac{1}{\sigma} = \frac{0}{2}$$

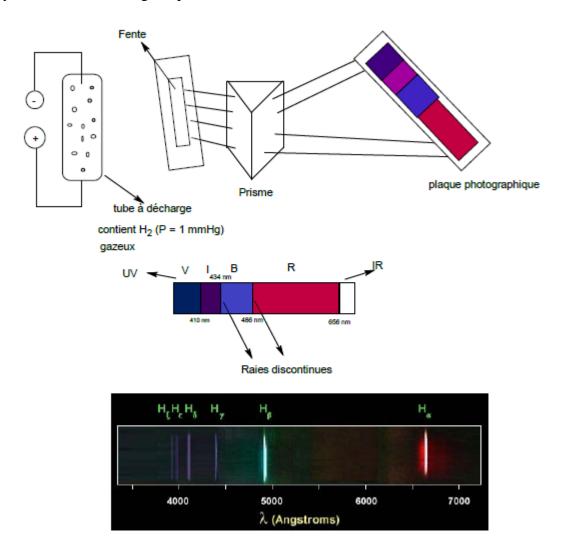

v: fréquence

On distingue différentes familles de radiations électromagnétiques:

IV.1.2. Aspect corpusculaire de la lumière : effet photoélectrique

Pour extraire un électron dans un métal il faut fournir de l'énergie. La lumière est constituée par un ensemble de corpuscules, **appelée photons** transportant un quantum d'énergie **E**

h :constante de Planck **h=6,62.10**⁻³⁴**J.s**


donc la lumière est caractérisée par un aspect ondulatoire λ et corpusculaire m

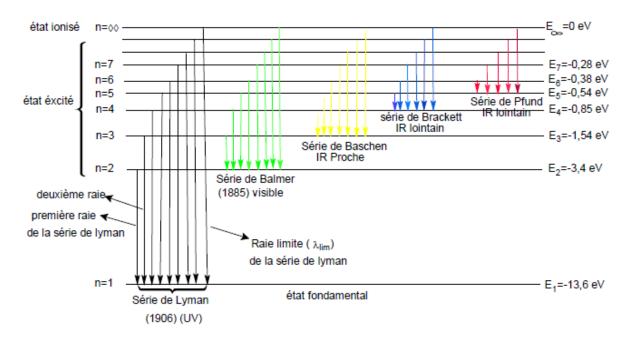
IV.2. Interaction entre la lumière et la matière

IV.2.1. Spectre d'émission de l'atome d'hydrogène

Expérimentalement, le spectre de l'atome d'hydrogène est obtenu en plaçant devant la fente d'un spectrographe un tube contenant de l'hydrogène sous faible pression et dans lequel on

provoque une décharge électrique. Cette décharge excite les atomes d'hydrogène. Lors du retour des atomes des divers états excités vers les états d'énergie inférieure, il y a émission de rayonnement électromagnétique

IV.2.2. Relation empirique de Balmer-Rydberg


La fréquence ν (ou nombre d'onde $\bar{\nu}$) de chaque raie lumineuse, rouge (R), bleu (B), indigo (I), et violette (V) appelées respectivement H_{α} , H_{β} , H_{γ} et H_{δ} est déterminé par

$$\begin{split} \nu &= C.\,R_{H}.\,(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}})\\ \bar{\nu} &= \frac{\nu}{C} = \frac{1}{\lambda} = R_{H}.\,(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}) \end{split}$$

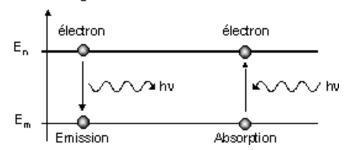
 R_H : constante de Rydberg $R_H = 1,097.10^7 \text{m}^{-1}$

IV.2.3. Notion de série de raies

Les raies sont groupées en séries spectrales, situées dans divers domaines de longueur d'onde, chaque série est distinguée par le nom du savant qu'il a découvert et correspond à la relaxation sur un niveau d'énergie

Série	n ₁	n_2	Domaine spectral
Lyman (1916)	1	$\geq 2(2,3,4,\ldots \infty)$	UV
Balmer (1885)	2	$\geq 3(3,4,5\ldots\infty)$	visible
Paschen (1908)	3	$\geq 4(4,5,6\infty)$	proche IR
Brackett (1922)	4	$\geq 5(5,7,8\ldots\infty)$	proche IR
Pfund (1924)	5	$\geq 6(6,7,8\ldots\infty)$	IR lointain

IV.2.4. Interprétation du spectre optique

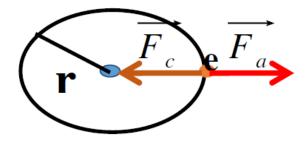

IV.2.4.1. Absorption lumineuse

Quand l'atome d'hydrogène n'est pas excité, l'électron se trouve sur un niveau de faible d'énergie (état fondamental). Quand cet atome est excité, il absorbe de l'énergie qui se traduit par une transition électronique de l'état fondamental à un état excité de plus haute énergie

IV.2.4.2. Emission lumineuse

L'électron de l'atome excité se trouve dans un état instable, il revient à son niveau d'énergie inférieur en émettant des radiations lumineuses

Niveau d'énergie



IV.3. Modèle atomique de Bohr

IV.3.1. Les postulats de Bohr

Bohr propose quatre hypothèses:

- Dans l'atome, le noyau est immobile alors que l'électron de masse m se déplace autour du noyau selon une orbite circulaire de rayon r;
- L'électron ne peut se trouver que sur des orbites privilégiées sans émettre de l'énergie; on les appelle "orbites stationnaires";
- Lorsqu'un électron passe d'un niveau à un autre il émet ou absorbe de l'énergie.

IV.3.2. Rayon des orbites stationnaires

Le système est stable par les deux forces : la force d'attraction $\overrightarrow{F_a}$ et la force centrifuge $\overrightarrow{F_c}$

$$F_a = \frac{Z.ke^2}{r_n^2}$$
; **k=9.10**°
$$F_c = \frac{mv^2}{r_n}$$

Le système est en équilibre :

$$F_a = F_c$$

$$\Rightarrow \frac{Z. ke^2}{r_n^2} = \frac{mv^2}{r_n}$$

D'après le 1^{er} postulat de Bohr (trajectoire circulaire) :

$$m. v. r_n = \frac{n. h}{2\pi}$$

$$\Rightarrow r_n = \frac{n^2 h^2}{4. \text{ m. Z. k. } \pi^2 e^2}$$

On pose:

 r_n : le rayon de l'orbite n

IV.3.3. Energie de l'électron sur une orbite stationnaire

L'énergie totale du système :

 $E_T = E_c + E_p$ $E_c = \frac{mv^2}{2}$ $E_p = \frac{-Zke^2}{r_p}$

L'énergie cinétique

L'énergie potentielle

L'énergie totale du système pour l'orbite n est :

 $E_n = \frac{-2k^2e^4\pi^2m}{h^2} \times \frac{1}{n^2}$ $E_1 = \frac{-2k^2e^4\pi^2m}{h^2}$

On pose:

 $\mathbf{E_1} = -13,6\mathrm{ev}$

 $\mathbf{E_n} = \frac{\mathbf{E_1}}{\mathbf{n^2}}$

E_n: l'énergie de l'orbite n

IV.3.4. Application aux hydrogénoïdes

Edifices atomique les plus simple possédant un seul électron : $H, He^+, Li^{2+}, Be^{3+}...$

Rayon de l'orbite : $r_n = \frac{n^2}{7}r_1$

Figure 1. Energie de l'électron : $E_n = \frac{Z^2}{n^2} E_1$

> Nombre d'onde : $\bar{\mathbf{v}} = \frac{\mathbf{v}}{C} = \frac{1}{\lambda} = \mathbf{Z}^2 \cdot \mathbf{R}_H \cdot (\frac{1}{n_1^2} - \frac{1}{n_2^2})$

IV.3.5. Insuffisance du modèle de Bohr

Le modèle de Bohr a très bien réussi d'expliquer le spectre de l'atome d'hydrogène et les ions hydrogénoïdes,. Malheureusement, il ne pouvait pas expliquer les spectres des atomes poly-électroniques, d'où la nécessité d'une nouvelle théorie, la mécanique

quantique (ou ondulatoire).

IV.4. L'atome d'hydrogène en mécanique ondulatoire

IV.4.1. Dualité onde-corpusule et relation de DE BROGLIE

Par analogie avec la lumière, DE BROGLIE (1924) a postulé que toute particule matérielle animée d'une vitesse (v) ayant une masse (m) pouvait être associée à une onde telle que sa longueur d'onde :

$$\lambda = \frac{h}{m. v}$$

IV.4.2. Principe d'incertitude d'Heisenberg

Ce principe affirme qu'il est impossible de mesurer simultanément et avec précision la position et la quantité de mouvement d'un corpuscule. Il s'écrit :

$$\Delta(\mathbf{m}, \mathbf{v}) \cdot \Delta \mathbf{x} \geq \bar{\mathbf{h}}$$

Avec :
$$\bar{\mathbf{h}} = \frac{\mathbf{h}}{2\pi}$$

Cette relation signifie que si on peut mesurer théoriquement (x) avec precision ($\Delta x \rightarrow 0$), alors (ΔV) deviendra :

$$\Delta \mathbf{v} \geq \frac{\bar{\mathbf{h}}}{\mathbf{m} \cdot \Delta \mathbf{x}}$$

IV.4.3. Les nombres quantiques et notion d'orbitale atomique

IV4.3.1. Nombres quantique principal (n)

Il caractérise le niveau d'énergie occupé par l'électron ou la couche qu'il occupe

Niveau d'énergie (n)	1	2	3	4	5	6	7
Couche	K	L	M	N	0	P	Q

IV4.3.2. Nombres quantique secondaire (*l*)

Il caractérise la sous couche occupée par l'électron. Avec :

$$\begin{array}{c|cccc} 0 \leq l \leq n-1 \\ \hline & l & 0 & 1 & 2 & 3 \\ \hline Sous couche & s & p & d & f \\ \hline \end{array}$$

IV4.3.3. Nombres quantique magnétique (m_l)

Il caractérise la case quantique occupée par l'électron et fixe son orientation dans le champ magnétique

$$-l \le m_l \le +l$$
; soit (2*l*+1) valeurs différentes

Graphiquement ce nombre est représenté par un rectangle (case quantique) :

On représente autant de rectangle qu'il y a de valeurs possibles de (m)

IV.4.3.4. Nombre quantique de spin (S)

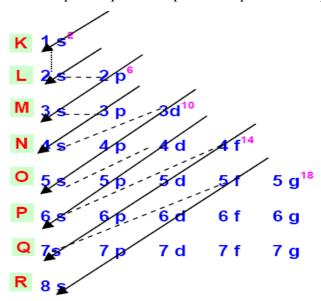
Il caractérise le mouvement de l'électron sur lui-même et peut prendre seulement deux valeurs différentes $S = \pm \frac{1}{2}$

Par convention: S = +1/2 \uparrow S = -1/2 \downarrow

Exemple

Les divers états de l'atome pour les niveaux d'énergie n=1 à n=3

	n	ı	Sous couche		Nombre de	Nombre d'électrons		
Couches			électronique	\mathbf{m}_l	cases quantiques	Sous couche	couche	
K	n=1	<i>l</i> =0	1s	$m_l = 0$		2	2	
L n=2		<i>l</i> =0	2s	$m_l = 0$		2	8	
	n=2	<i>l</i> =1	2p	$m_l = -1$ $m_l = 0$ $m_l = +1$		6		
M		<i>l</i> =0	3s	$m_l = 0$		2		
		<i>l</i> =1	3р	$m_l = -1$ $m_l = 0$ $m_l = +1$		6		
	n=3	<i>l</i> =2	3d	$m_{l} = -2$ $m_{l} = -1$ $m_{l} = 0$ $m_{l} = +1$ $m_{l} = +2$		10	18	


IV.5. Atomes poly électroniques en mécanique ondulatoire

Soit un atome poly-électronique dont les orbitales atomiques sont définies par les nombres quantiques (n,). Le remplissage de ces orbitales par les Z électrons suit les règles suivantes :

- 1. Chaque sous couche a un niveau d'énergie associée qui lui est propre
- 2. Les cases quantiques de la même sous couche ont la même énergie indépendamment de m et de s
- 3. L'ordre des niveaux d'énergie des sous couches est donné par la règle de KLECHOWSKI

IV.5.1. Configuration électronique des éléments: règle de Kelechkowsky

L'ordre de remplissage des diverses couches et sous couches se fait par ordre croissant d'énergie (n+l). D'où : 1s / 2s 2p / 3s 3p/ 4s 3d 4p / 5s 4d 5p/ 6s 4f 5d 6p/7s 5f 6d 7p

Exemple

$$_{8}O: 1s^{2} 2s^{2} 2p^{4}$$

$$_{20}$$
Ca: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

$$_{23}$$
V: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$

$$^{35}\mathrm{Br:}\ 1\mathrm{s}^{2}\ 2\mathrm{s}^{2}\ 2\mathrm{p}^{6}\ 3\mathrm{s}^{2}\ 3\mathrm{p}^{6}\ 4\mathrm{s}^{2}3\mathrm{d}^{10}\ 4\mathrm{p}^{5}$$

IV.5.2. Règles de remplissage des orbitales atomique

IV.5.2.1. Principe de la stabilité

le remplissages des orbitales atomiques se fait par ordre croissant de leur énergie , c-à-d, de la plus basse énergie à la plus élevée

IV.5.2.1. Le principe d'exclusion de Pauli

deux électrons d'un atome ne peuvent pas avoir les mêmes nombres quantiques (n,l,m,S), c-à-d, ne peuvent pas avoir le même état quantique :

$$S = +1/2 \qquad \qquad S = -1/2$$

IV.5.2.2. Règle de Hund

Dans une même sous couche, les électrons occupent le maximum de cases quantiques.

Exemple

$$_7N$$
: $1s^2 2s^2 2p^3$:

$$_{9}F$$
: $1s^{2} 2s^{2} 2p^{5}$: 1

IV.5.3. Configuration électronique simplifiée (condensée)

Configuration du gaz rare+couche externe

Avec : gaz rare : c'est le gaz dont le numéro atomique est le plus proche possible du numéro atomique de l'élément considéré tout en lui restant inférieur :

Gaz rare	Symbole	Nombre d'électron	
Hélium	Не	2	2< Z <2
Néon	Ne	10	10 <z<18< th=""></z<18<>
Argon	Ar	18	18 <z<36< th=""></z<36<>
Krypton	Kr	36	36<54<54
Xénon	Xe	54	54 <z<86< th=""></z<86<>
Radon	Rn	86	Z>86

Exemple

Pour : Z=53: 1 S^2 2 S^2 2 p^6 3 S^2 3 p^6 4 S^2 3 d^{10} 4 p^6 5 S^2 4 d^{10} 5 p^5

On écrira simplement : $[Kr]_{36}$ 5 S^2 4 d^{10} 5 p^5

IV.5.3. couche et électron de valence

C'est la couche la plus externe occupée par les électrons ou bien la couche dont le (n) est plus élevée. C'est cette couche qui est l'origine des propriétés chimiques des éléments.

Les électrons de valence sont les électrons appartenant à la couche de valence

Exemple

Pour Z=32 : 1 S^2 2 S^2 2 p^6 3 S^2 3 p^6 4 S^2 3 d^{10} 4 p_{\parallel}^2 Ou : Couche de valence

> : $_{18}[Ar]$ $4 S^2 3d^{10} 4 p^2$ Couche de valence

Electrons de valence : $14\bar{e}$