

Functions of a real variable $-1^{\text {st }}$ Part

Motivation.

A function allows to define a result (most often numerical) for each value of a set called domain. This result can be obtained by a series of arithmetic calculations or by a list of values, particularly in the case of taking physical measurements, or by other processes such as solving equations or crossing the limit. The actual calculation of the result or its approximation possibly relies on the development of a computer function . "Wikipedia"

+++

4.1. Definitions and properties

Definitions 1.

- A function is a relation f from a set E to a set F, such that every element x of E admits at most one image in F, we write:

$$
\begin{gathered}
f: \quad E \rightarrow F \\
\\
x \mapsto f(x)
\end{gathered}
$$

- If $F \subseteq \mathbb{R}$ we say that f is a real function. If further $E \subseteq \mathbb{R}$, we say that f is a real function of a real variable.
- The definition set of the function f noted D_{f} is the subset of E of the values taken by x for which $f(x)$ is computable, i.e. the elements of E which have an image by f.
- We call a graph, or representative curve, of a function f the set:

$$
\Gamma=\left\{(x, f(x)) \in \mathbb{R}^{2} / x \in D_{f}\right\}
$$

It is the set of points M on the coordinate plane (x, y) where: $y=f(x)$.

Examples.

1) The "inverse of a number" relation is a function defined by: $f(x)=\frac{1}{x}$.
2) The polynomial $f(x)=x^{2}+x-3$ is a function defined on \mathbb{R}.
3) The affine function is in the form: $f(x)=a x+b$.
4) The integer power function is given by : $f(x)=x^{n}, n \in \mathbb{N}$.
5) The n-th root function is given by: $f(x)=x^{\frac{1}{n}}, n \in \mathbb{N}^{*}$.
6) The homographic function is a fraction : $f(x)=\frac{a x+b}{c x+d}$.
7) The integer part function is given by: $f(x)=E(x)$.
8) The absolute value function is given by : $f(x)=|x|$.

Definitions 2.

Let $f: D \rightarrow \mathbb{R}$ a real function. We say that :

- f is increasing on D if: $\forall x_{1}, x_{2} \in D, x_{1} \leq x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$.
- f is strictly increasing on D if: $\forall x_{1}, x_{2} \in D, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$.
- f is decreasing on D if: $\forall x_{1}, x_{2} \in D, x_{1} \leq x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$.
- f is strictly decreasing on D if: $\forall x_{1}, x_{2} \in D, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$.
- f is monotonic if it is increasing or decreasing.
- f is strictly monotonic if it is strictly increasing or strictly decreasing.

Examples.

1) The function $f(x)=x+2$ is strictly increasing on \mathbb{R}.
2) The function $f(x)=|x|$ is strictly increasing on \mathbb{R}_{+}. But, it is neither increasing nor decreasing on \mathbb{R}.
3) The function $f(x)=\ln x$ is strictly increasing on \mathbb{R}. The function $f(x)=-\ln x$ is strictly decreasing on \mathbb{R}.

Definitions 3.

*The function f is constant if: $\exists \alpha \in \mathbb{R}, \forall x \in D: \quad f(x)=\alpha$.
*The function f is periodic if: $\quad \exists T \in \mathbb{R}, \forall x \in D: \quad f(x+T)=f(x)$.

Definitions 4.

Consider $f: D \rightarrow \mathbb{R}$ a function, with D is symmetrical about 0 . We say that:

* The function f is even if : $\forall x \in D \quad, \quad f(-x)=f(x)$.
* The function f is odd if: $\quad \forall x \in D, f(-x)=-f(x)$.

Remarks: (Geometric interpretation)

- A function is even if its graph is symmetrical about the y-axis.
- A function is odd if its graph is symmetrical about the origin.

Examples.

1) The function $f(x)=\sqrt{x^{2}-1}$ is even on the domain of definition $\left.D=\right]-\infty,-1[\cup] 1,+\infty[$.
2) The domain of definition of the function $f(x)=\sqrt{x}$ is not symmetrical about 0 .
3) The functions $f(x)=x^{2}, f(x)=x^{4}, \ldots, f(x)=x^{2 n}$ are even on \mathbb{R}.
4) The functions $f(x)=x, f(x)=x^{3}, \ldots, f(x)=x^{2 n+1}$ are odd on \mathbb{R}.

Definitions 5, Let $f: D \rightarrow \mathbb{R}$ a real function. We say that:

- f is increased on D if $: \exists M \in \mathbb{R}, \forall x \in D: f(x) \leq M$.
- f is reduced on D if : $\exists m \in \mathbb{R}, \forall x \in D: f(x) \geq m$.
- We say that the function f is bounded if : $\exists M \in \mathbb{R}, \forall x \in D:|f(x)| \leq M$. That is to say that f is increased and reduced.

Examples.

1) The function $f(x)=e^{x}$ is minimized on $D=\mathbb{R}$ by $m=0$, it is not increased.
2) The function $f(x)=-e^{x}$ is increased on $D=\mathbb{R}$ by $M=0$, it is not reduced.
3) The function $f(x)=\cos x$ is bounded on $D=\mathbb{R}$ by 1 et -1 . We have: $\forall x \in \mathbb{R},|\cos x| \leq 1$.

Definitions 6. Let $f: D_{f} \rightarrow F_{f}$ and be $g: D_{g} \rightarrow F_{g}$ two functions such that $D_{f} \subset D_{g}$. We define the function composed gof by:

$$
\text { gof: } \begin{gathered}
D_{f} \rightarrow F_{g} \\
x \rightarrow g(f(x))
\end{gathered}
$$

Notes:

1) The condition $D_{f} \subset D_{g}$ is essential for the image by the function g to $f(x)$ have meaning.
2) It is necessary to pay attention to the order of functions, in general gof and fog are not equal.

4.2. Limits

Definition 7, Let be $f: D \rightarrow \mathbb{R}$ a real function, $\ell \in \mathbb{R}$ and $x_{0} \in D$ where an endpoint of D.
We say that the function f admits a limit ℓ in x_{0}, if :

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in D:\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-\ell|<\varepsilon
$$

We write: $\lim _{x \rightarrow x_{0}} f(x)=\ell$
Explanation: If x is in the neighborhood of x_{0}, i.e. $\left.x \in\right] x_{0}-\delta, x_{0}+\delta[$, then $f(x)$ is in the neighborhood of ℓ, ie $f(x) \in] \ell-\varepsilon, \ell+\varepsilon[$.

Example. Let the function $f(x)=7 x+1$ be defined on $D=\mathbb{R}$.
For $x_{0}=1$, we have $\lim _{x \rightarrow 1} f(x)=8$. In fact, we have:

$$
|f(x)-8|<\varepsilon \Leftrightarrow 7|x-1|<\varepsilon \Leftrightarrow|x-1|<\frac{\varepsilon}{7}
$$

So just take $\delta=\frac{\varepsilon}{3}$, so that the definition of the limit is verified:

$$
\forall \varepsilon>0, \exists \delta=\frac{\varepsilon}{7}>0, \forall x \in D: \quad|x-1|<\delta \Rightarrow|f(x)-8|<\varepsilon
$$

Proposition 1. If f admit a limit at a point, then this limit is unique.
Definitions 8, Let be $f: D \rightarrow \mathbb{R}$ a real function, $x_{0} \in D$ where an endpoint of D.

- We say that the function f tends to $+\infty$ in x_{0}, if :

$$
\forall A>0, \exists \delta>0, \forall x \in D: \quad\left|x-x_{0}\right|<\delta \Rightarrow f(x)>A
$$

We write : $\lim _{x \rightarrow x_{0}} f(x)=+\infty$

- We say that the function f tends to $-\infty$ in x_{0}, if :

$$
\forall A>0, \exists \delta>0, \forall x \in D: \quad\left|x-x_{0}\right|<\delta \Rightarrow f(x)<-A
$$

We write : $\lim _{x \rightarrow x_{0}} f(x)=-\infty$
Definitions 9, Let be $f: D \rightarrow \mathbb{R}$ a real function and $\ell \in \mathbb{R}$.

- We say that the function f tends to ℓ in $+\infty$ (we write $\lim _{x \rightarrow+\infty} f(x)=\ell$), if :

$$
\forall \varepsilon>0, \exists B>0, \forall x \in D: x>B \Rightarrow|f(x)-\ell|<\varepsilon
$$

- We say that the function f tends to ℓ in $-\infty$ (we write $\lim _{x \rightarrow-\infty} f(x)=\ell$), if:

$$
\forall \varepsilon>0, \exists B>0, \forall x \in D: \quad x<-B \Rightarrow|f(x)-\ell|<\varepsilon
$$

- We say that the function f tends to $+\infty$ in $+\infty$ (we write $\lim _{x \rightarrow+\infty} f(x)=+\infty$), if:

$$
\forall A>0, \exists B>0, \forall x \in D: x>B \Rightarrow f(x)>A
$$

- We say that the function f tends to $-\infty$ in $+\infty$ (we write $\lim _{x \rightarrow+\infty} f(x)=-\infty$), if :

$$
\forall A>0, \exists B>0, \forall x \in D: x>B \Rightarrow f(x)>-A
$$

- We say that the function f tends to $+\infty$ in $-\infty$ (we write $\lim _{x \rightarrow-\infty} f(x)=+\infty$), if :

$$
\forall A>0, \exists B>0, \forall x \in D: \quad x<-B \Rightarrow f(x)<A
$$

- We say that the function f tends towards $-\infty$ en $-\infty$ (we write $\lim _{x \rightarrow-\infty} f(x)=-\infty$), if :

$$
\forall A>0, \exists B>0, \forall x \in D: \quad x<-B \Rightarrow f(x)>-A
$$

Examples.

1) For $n \in \mathbb{N}$, we have:

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} x^{n}=+\infty \quad \text { et } \lim _{x \rightarrow-\infty} x^{n}=\left\{\begin{array}{llr}
+\infty & \text { si } & n \text { est pair } \\
-\infty & \text { si } & n \text { est impair }
\end{array}\right. \\
\lim _{x \rightarrow+\infty} \frac{1}{x^{n}}=\lim _{x \rightarrow-\infty} \frac{1}{x^{n}}=0
\end{gathered}
$$

2) To $n, m \in \mathbb{N}$ be $f(x)=\frac{a_{n} x^{n}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+\cdots+b_{1} x+b_{0}}$, with $a_{n}, b_{m} \in \mathbb{R}_{+}^{*}$. We have :

$$
\lim _{x \rightarrow+\infty} f(x)=\left\{\begin{array}{lll}
+\infty & \text { si } & n>m \\
\frac{a_{n}}{b_{m}} & \text { si } & n=m \\
-\infty & \text { si } & n<m
\end{array}\right.
$$

Definitions 10.

- We say that the function f admits a right limit in x_{0}, if:

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in D: 0<x-x_{0}<\delta \Rightarrow|f(x)-\ell|<\varepsilon
$$

We write: $\lim _{x \rightarrow x_{0}} f(x)=\ell$ or $\lim _{x \rightarrow x_{0}^{+}} f(x)=\ell$

- We say that the function f admits a left limit in x_{0}, if :

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in D: \delta<x-x_{0}<0 \Rightarrow|f(x)-\ell|<\varepsilon
$$

We write: $\lim _{x \rightarrow x_{0}} f(x)=\ell$ or $\lim _{x \rightarrow x_{0}^{-}} f(x)=\ell$
Proposition 2. We have the following equivalence:

$$
\lim _{x \rightarrow x_{0}} f(x)=\ell \Leftrightarrow \lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} f(x)=\ell
$$

Noticed

- To demonstrate that $\lim _{x \rightarrow x_{0}} f(x) \neq \ell$ it is enough to demonstrate that one of the two limits (right or left) is different from ℓ.
- To demonstrate that f there is no limit at the point x_{0}, it is enough to demonstrate that the two limits (on the right and on the left) are different.

Example : Let the function:

$$
f(x)=\frac{|x|}{x}=\left\{\begin{array}{ccc}
1 & \text { si } & x>0 \\
-1 & \text { si } & x<0
\end{array}\right.
$$

We have $\lim _{x \rightarrow 0} f(x)=-1 \neq \lim _{x \rightarrow 0} f(x)=1$. So f does not admit a limit to the point $x_{0}=0$.

Proposition 3.

Let be $f: D \rightarrow \mathbb{R}$ a real function, $x_{0} \in D$ where one end of D. Then $\lim _{x \rightarrow x_{0}} f(x)=\ell$ iff for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x_{0}, we have $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ converged to ℓ. ie .

$$
\lim _{x \rightarrow x_{0}} f(x)=\ell \Leftrightarrow \forall\left(x_{n}\right)_{n \in \mathbb{N}} \subset D \text { tel que } \lim _{n \rightarrow+\infty} x_{n}=x_{0} \text { on a } \lim _{n \rightarrow+\infty} f\left(x_{n}\right)=\ell
$$

Example. The function defined by $f(x)=\cos \frac{1}{x}$ does not admit a limit or point $x_{0}=0$.
Indeed, the following two sequences:

$$
x_{n}=\frac{1}{2 n \pi} \quad, \quad t_{n}=\frac{1}{(2 n+1) \pi}
$$

Converge towards $x_{0}=0$. On the other hand, we have:

$$
\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=\lim _{n \rightarrow+\infty} \cos (2 n \pi)=1 \neq-1=\lim _{n \rightarrow+\infty} \cos ((2 n+1) \pi)=\lim _{n \rightarrow+\infty} f\left(t_{n}\right)
$$

Proposition 4.

Let f, g two functions be such that $\lim _{x \rightarrow x_{0}} f(x)=A$ and $\lim _{x \rightarrow x_{0}} g(x)=B$, then:

1) $\lim _{x \rightarrow x_{0}}(f(x)+g(x))=\lim _{x \rightarrow x_{0}} f(x)+\lim _{x \rightarrow x_{0}} g(x)=A+B$.
2) $\lim _{x \rightarrow x_{0}}(f(x)-g(x))=\lim _{x \rightarrow x_{0}} f(x)-\lim _{x \rightarrow x_{0}} g(x)=A-B$.
3) $\lim _{x \rightarrow x_{0}}(f(x) \times g(x))=\lim _{x \rightarrow x_{0}} f(x) \times \lim _{x \rightarrow x_{0}} g(x)=A \times B$.
4) $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{A}{B}, \quad B \neq 0$.

Theorem 1. (Comparison rule)

- Let f, g two functions be such that : $\forall x \in D, f(x) \leq g(x)$. SO :

$$
\lim _{x \rightarrow x_{0}} f(x) \leq \lim _{x \rightarrow x_{0}} g(x)
$$

- In addition we have:

$$
\lim _{x \rightarrow x_{0}} f(x)=+\infty \Rightarrow \lim _{x \rightarrow x_{0}} g(x)=+\infty .
$$

Theorem 2. (Squeeze' theorem)
Consider f, g and h three functions, such as:

$$
\forall x \in D, g \leq f \leq h \quad \text { And } \quad \lim _{x \rightarrow x_{0}} g(x)=\lim _{x \rightarrow x_{0}} h(x)=\ell .
$$

So we have: $\lim _{x \rightarrow x_{0}} f(x)=\ell$.
Proposition 5. (Limit of product)
Let f and g two functions, such as g is bounded and $\lim _{x \rightarrow x_{0}} f(x)=0$. So :

$$
\lim _{x \rightarrow x_{0}} f(x) g(x)=\mathbf{0}
$$

Proposition 6 . (Limit of composition)

Let f and g two functions, such as $\lim _{x \rightarrow x_{0}} f(x)=\ell$ and $\lim _{t \rightarrow \ell} g(t)=\mathrm{L}$. So :

$$
\lim _{x \rightarrow x_{0}} g o f(x)=L
$$

Special limitations:

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 & , \\
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\mathrm{e} & , \\
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1 & ,
\end{array}
$$

