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Chapter 4: 

Functions of a real variable – 1
st

 Part  

Motivation. 

A function allows to define a result (most often numerical ) for each value of a set called domain . This result can be 

obtained by a series of arithmetic calculations or by a list of values, particularly in the case of taking physical 

measurements, or by other processes such as solving equations or crossing the limit . The actual calculation of the 

result or its approximation possibly relies on the development of a computer function . “Wikipedia” 

+++++++++++++++++++++++++++++++++++++++++++ 

 

 

Definitions 1. 

 A function is a relation 𝑓 from a set 𝐸 to a set 𝐹 , such that every element 𝑥 of 𝐸 admits at most one 

image in 𝐹, we write: 

𝑓 ∶ 𝐸 ⟶ 𝐹

𝑥 ⟼ 𝑓(𝑥)
 

 If  𝐹 ⊆ ℝ  we say that 𝑓 is a real function. If further  𝐸 ⊆ ℝ, we say that 𝑓 is a real function of a real 

variable. 

 The definition set of the function 𝑓noted 𝐷𝑓 is the subset of 𝐸 of the values taken by 𝑥 for which 

𝑓(𝑥) is computable, i.e. the elements of 𝐸 which have an image by 𝑓. 

 We call a graph , or representative curve , of a function 𝑓 the set: 

Γ = {(𝑥, 𝑓(𝑥)) ∈ ℝ2  ∕   𝑥 ∈ 𝐷𝑓} 

It is the set of points 𝑀on the coordinate plane (𝑥,  𝑦)  𝑤ℎ𝑒𝑟𝑒:   𝑦 = 𝑓(𝑥). 

Examples. 

1) The “inverse of a number” relation is a function defined by : 𝑓(𝑥) =
1

𝑥
. 

2) The polynomial 𝑓(𝑥) = 𝑥2 + 𝑥 − 3 is a function defined on ℝ. 

3) The affine function is in the form: 𝑓(𝑥) = 𝑎𝑥 + 𝑏 . 

4) The integer power function is given by : 𝑓(𝑥) = 𝑥𝑛    ,    𝑛 ∈ ℕ. 

5) The 𝒏-th root function is given by : 𝑓(𝑥) = 𝑥
1

𝑛    ,    𝑛 ∈ ℕ∗. 

6) The homographic function is a fraction : 𝑓(𝑥) =
𝑎𝑥+𝑏

𝑐𝑥+𝑑
. 

7) The integer part function is given by : 𝑓(𝑥) = 𝐸(𝑥). 

8) The absolute value function is given by : 𝑓(𝑥) = |𝑥|. 

 

4.1. Definitions and properties  

https://fr.wikipedia.org/wiki/Fonction_num%C3%A9rique
https://fr.wikipedia.org/wiki/Ensemble
https://fr.wikipedia.org/wiki/Op%C3%A9ration_arithm%C3%A9tique
https://fr.wikipedia.org/wiki/%C3%89quation
https://fr.wikipedia.org/wiki/Limite_(math%C3%A9matiques)
https://fr.wikipedia.org/wiki/Routine_(informatique)
https://fr.wikipedia.org/wiki/Routine_(informatique)
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Definitions 2. 

Let 𝑓: 𝐷 ⟶ ℝ a real function. We say that : 

 𝑓 is increasing on 𝐷 if : ∀𝑥1, 𝑥2 ∈ 𝐷  ,   𝑥1 ≤ 𝑥2 ⟹  𝑓(𝑥1) ≤ 𝑓(𝑥2). 

 𝑓 is strictly increasing on 𝐷 if : ∀𝑥1, 𝑥2 ∈ 𝐷  ,   𝑥1 < 𝑥2 ⟹  𝑓(𝑥1) < 𝑓(𝑥2). 

 𝑓 is decreasing on 𝐷 if : ∀𝑥1, 𝑥2 ∈ 𝐷  ,   𝑥1 ≤ 𝑥2 ⟹  𝑓(𝑥1) ≥ 𝑓(𝑥2). 

 𝑓 is strictly decreasing on 𝐷 if :  ∀𝑥1, 𝑥2 ∈ 𝐷  ,   𝑥1 < 𝑥2 ⟹  𝑓(𝑥1) > 𝑓(𝑥2). 

 𝑓 is monotonic if it is increasing or decreasing. 

 𝑓 is strictly monotonic if it is strictly increasing or strictly decreasing. 

Examples. 

1) The function 𝑓(𝑥) = 𝑥 + 2 is strictly increasing on ℝ. 

2) The function 𝑓(𝑥) = |𝑥| is strictly increasing on ℝ+. But, it is neither increasing nor decreasing 

on ℝ. 

3) The function 𝑓(𝑥) = ln 𝑥 is strictly increasing on ℝ. The function 𝑓(𝑥) = − ln 𝑥 is strictly 

decreasing on ℝ. 

Definitions 3. 

 The function 𝑓 is constant if :       ∃𝛼 ∈ ℝ  , ∀𝑥 ∈ 𝐷 ∶     𝑓(𝑥) = 𝛼. 

 The function 𝑓 is periodic if :       ∃𝑇 ∈ ℝ, ∀𝑥 ∈ 𝐷 ∶     𝑓(𝑥 + 𝑇) = 𝑓(𝑥). 

Definitions 4. 

Consider 𝑓: 𝐷 ⟶ ℝ a function, with 𝐷 is symmetrical about 0. We say that: 

 The function 𝑓 is even if :    ∀𝑥 ∈ 𝐷     ,    𝑓(−𝑥) = 𝑓(𝑥). 

 The function 𝑓 is odd if :       ∀𝑥 ∈ 𝐷    ,   𝑓(−𝑥) = −𝑓(𝑥). 

Remarks : (Geometric interpretation) 

 A function is even if its graph is symmetrical about the y-axis. 

 A function is odd if its graph is symmetrical about the origin. 

Examples. 

1) The function 𝑓(𝑥) = √𝑥2 − 1 is even on the domain of definition 𝐷 = ]−∞, −1[ ∪ ]1, +∞[. 

2) The domain of definition of the function 𝑓(𝑥) = √𝑥 is not symmetrical about 0. 

3) The functions 𝑓(𝑥) = 𝑥2  , 𝑓(𝑥) = 𝑥4 , … , 𝑓(𝑥) = 𝑥2𝑛 are even on ℝ. 

4) The functions 𝑓(𝑥) = 𝑥  , 𝑓(𝑥) = 𝑥3 , … , 𝑓(𝑥) = 𝑥2𝑛+1 are odd on ℝ. 

Definitions 5. Let 𝑓: 𝐷 ⟶ ℝ a real function. We say that : 

 𝑓 is increased on 𝐷 if : ∃𝑀 ∈ ℝ, ∀𝑥 ∈ 𝐷 ∶   𝑓(𝑥) ≤ 𝑀. 

 𝑓 is reduced on 𝐷 if :  ∃𝑚 ∈ ℝ, ∀𝑥 ∈ 𝐷 ∶   𝑓(𝑥) ≥ 𝑚. 
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 We say that the function 𝑓is bounded if :  ∃𝑀 ∈ ℝ, ∀𝑥 ∈ 𝐷 ∶   |𝑓(𝑥)| ≤ 𝑀 . 

That is to say that 𝑓is increased and reduced . 

Examples. 

1) The function 𝑓(𝑥) = 𝑒𝑥 is minimized on 𝐷 = ℝ  by 𝑚 = 0, it is not increased. 

2) The function 𝑓(𝑥) = −𝑒𝑥 is increased on 𝐷 = ℝ  by 𝑀 = 0, it is not reduced. 

3) The function 𝑓(𝑥) = cos 𝑥 is bounded on 𝐷 = ℝ    by 1 et − 1 . We have : ∀𝑥 ∈ ℝ  , |cos 𝑥| ≤ 1. 

Definitions 6. Let 𝑓: 𝐷𝑓 ⟶ 𝐹𝑓 and be 𝑔: 𝐷𝑔 ⟶ 𝐹𝑔two functions such that 𝐷𝑓 ⊂ 𝐷𝑔. We define the 

function composed 𝑔𝜊𝑓 by: 

𝑔𝜊𝑓 ∶  
𝐷𝑓 ⟶ 𝐹𝑔

𝑥 ⟶ 𝑔(𝑓(𝑥))
  

Notes : 

1) The condition 𝐷𝑓 ⊂ 𝐷𝑔 is essential for the image by the function 𝑔 to 𝑓(𝑥)have meaning. 

2) It is necessary to pay attention to the order of functions, in general 𝑔𝜊𝑓 and 𝑓𝜊𝑔 are not equal. 

 

+++++++++++++++++++++++++++++++++++++++++++ 

 

 

 

Definition 7. Let be 𝑓: 𝐷 ⟶ ℝ a real function, ℓ ∈ ℝ and 𝑥0 ∈ 𝐷 where an endpoint of 𝐷. 

We say that the function 𝑓admits a limit ℓ in 𝑥0, if : 

∀휀 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝐷 ∶    |𝑥 − 𝑥0| < 𝛿 ⟹   |𝑓(𝑥) − ℓ| < 휀 

We write :   lim
𝑥→𝑥0

𝑓(𝑥) = ℓ 

Explanation: If 𝑥 is in the neighborhood of 𝑥0 , i.e.   𝑥 ∈ ]𝑥0 − 𝛿 , 𝑥0 + 𝛿[ , then𝑓(𝑥)  is in the 

neighborhood of ℓ, ie   𝑓(𝑥) ∈ ]ℓ − 휀 , ℓ + 휀[. 

Example. Let the function 𝑓(𝑥) = 7𝑥 + 1 be defined on 𝐷 = ℝ. 

For 𝑥0 = 1, we have lim
𝑥→1

𝑓(𝑥) = 8. In fact, we have: 

|𝑓(𝑥) − 8| < 휀 ⟺ 7|𝑥 − 1| < 휀 ⟺ |𝑥 − 1| <
휀

7
 

So just take 𝛿 =
𝜀

3
 ,  so that the definition of the limit is verified: 

∀휀 > 0, ∃𝛿 =
휀

7
> 0, ∀𝑥 ∈ 𝐷 ∶    |𝑥 − 1| < 𝛿 ⟹   |𝑓(𝑥) − 8| < 휀 

Proposition 1. If 𝑓 admit a limit at a point, then this limit is unique. 

Definitions 8. Let be 𝑓: 𝐷 ⟶ ℝ  a real function, 𝑥0 ∈ 𝐷 where an endpoint of 𝐷. 

 We say that the function 𝑓 tends to +∞ in 𝑥0, if : 

4.2. Limits 



 

Page 4of 6 
 

∀𝐴 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝐷 ∶    |𝑥 − 𝑥0| < 𝛿 ⟹   𝑓(𝑥) > 𝐴 

We write : lim
𝑥→𝑥0

𝑓(𝑥) = +∞ 

 We say that the function 𝑓 tends to −∞ in 𝑥0, if : 

∀𝐴 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝐷 ∶    |𝑥 − 𝑥0| < 𝛿 ⟹   𝑓(𝑥) < −𝐴 

We write : lim
𝑥→𝑥0

𝑓(𝑥) = −∞ 

Definitions 9. Let be 𝑓: 𝐷 ⟶ ℝ a real function and ℓ ∈ ℝ. 

 We say that the function 𝑓 tends to ℓ in +∞(we write lim
𝑥→+∞

𝑓(𝑥) = ℓ), if : 

∀휀 > 0, ∃𝐵 > 0, ∀𝑥 ∈ 𝐷 ∶    𝑥 > 𝐵 ⟹   |𝑓(𝑥) − ℓ| < 휀 

 We say that the function 𝑓 tends to ℓ in −∞ (we write lim
𝑥→−∞

𝑓(𝑥) = ℓ), if : 

∀휀 > 0, ∃𝐵 > 0, ∀𝑥 ∈ 𝐷 ∶    𝑥 < −𝐵 ⟹    |𝑓(𝑥) − ℓ| < 휀 

 We say that the function 𝑓 tends to +∞ in +∞ (we write lim
𝑥→+∞

𝑓(𝑥) = +∞), if : 

∀𝐴 > 0, ∃𝐵 > 0, ∀𝑥 ∈ 𝐷 ∶    𝑥 > 𝐵 ⟹    𝑓(𝑥) > 𝐴 

 We say that the function 𝑓 tends to −∞ in +∞ (we write lim
𝑥→+∞

𝑓(𝑥) = −∞), if : 

∀𝐴 > 0, ∃𝐵 > 0, ∀𝑥 ∈ 𝐷 ∶    𝑥 > 𝐵 ⟹    𝑓(𝑥) > −𝐴 

 We say that the function𝑓 tends to+∞ in −∞ (we write lim
𝑥→−∞

𝑓(𝑥) = +∞), if : 

∀𝐴 > 0, ∃𝐵 > 0, ∀𝑥 ∈ 𝐷 ∶    𝑥 < −𝐵 ⟹    𝑓(𝑥) < 𝐴 

 We say that the function𝑓 tends towards −∞en −∞ ( we write lim
𝑥→−∞

𝑓(𝑥) = −∞), if : 

∀𝐴 > 0, ∃𝐵 > 0, ∀𝑥 ∈ 𝐷 ∶    𝑥 < −𝐵 ⟹    𝑓(𝑥) > −𝐴 

Examples. 

1) For 𝑛 ∈ ℕ, we have: 

lim
𝑥→+∞

𝑥𝑛 = +∞                𝑒𝑡          lim
𝑥→−∞

𝑥𝑛 = {

+∞    si       𝑛 est pair

−∞     si   𝑛 est impair
 

lim
𝑥→+∞

1

𝑥𝑛
= lim

𝑥→−∞

1

𝑥𝑛
= 0 

2) To 𝑛, 𝑚 ∈ ℕbe 𝑓(𝑥) =
𝑎𝑛𝑥𝑛+⋯+𝑎1𝑥+𝑎0

𝑏𝑚𝑥𝑚+⋯+𝑏1𝑥+𝑏0
  , with 𝑎𝑛 , 𝑏𝑚 ∈ ℝ+

∗ . We have : 

lim
𝑥→+∞

𝑓(𝑥) = {

+∞    si       𝑛 > 𝑚
𝑎𝑛

𝑏𝑚
    si       𝑛 = 𝑚

−∞    si       𝑛 < 𝑚

 

Definitions 10. 

 We say that the function 𝑓admits a right limit in 𝑥0, if : 

∀휀 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝐷 ∶   0 < 𝑥 − 𝑥0 < 𝛿 ⟹   |𝑓(𝑥) − ℓ| < 휀 
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We write: lim
𝑥

>
→𝑥0

𝑓(𝑥) = ℓ   or   lim
𝑥→𝑥0

+
𝑓(𝑥) = ℓ 

 We say that the function 𝑓admits a left limit in 𝑥0, if : 

∀휀 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝐷 ∶   𝛿 < 𝑥 − 𝑥0 < 0 ⟹   |𝑓(𝑥) − ℓ| < 휀 

We write: lim
𝑥

<
→𝑥0

𝑓(𝑥) = ℓ  or  lim
𝑥→𝑥0

−
𝑓(𝑥) = ℓ 

Proposition 2. We have the following equivalence: 

lim
𝑥→𝑥0

𝑓(𝑥) = ℓ ⟺ lim
𝑥

>
→𝑥0

𝑓(𝑥) = lim
𝑥

<
→𝑥0

𝑓(𝑥) = ℓ 

Noticed :  

 To demonstrate that lim
𝑥→𝑥0

𝑓(𝑥) ≠ ℓ it is enough to demonstrate that one of the two limits (right 

or left) is different from ℓ. 

 To demonstrate that 𝑓there is no limit at the point 𝑥0, it is enough to demonstrate that the two 

limits (on the right and on the left) are different. 

Example : Let the function: 

𝑓(𝑥) =
|𝑥|

𝑥
= {

1        si    𝑥 > 0

−1       si    𝑥 < 0
 

We have lim
𝑥

<
→0

𝑓(𝑥) = −1 ≠ lim
𝑥

>
→0

𝑓(𝑥) = 1.  So 𝑓 does not admit a limit to the point 𝑥0 = 0. 

Proposition 3. 

Let be 𝑓: 𝐷 ⟶ ℝ a real function, 𝑥0 ∈ 𝐷 where one end of 𝐷. Then lim
𝑥→𝑥0

𝑓(𝑥) = ℓ iff for every sequence 

(𝑥𝑛)𝑛∈ℕ converges to 𝑥0, we have (𝑓(𝑥𝑛))𝑛∈ℕ converged to ℓ. ie . 

lim
𝑥→𝑥0

𝑓(𝑥) = ℓ    ⟺    ∀(𝑥𝑛)𝑛∈ℕ ⊂ 𝐷  tel que  lim
𝑛→+∞

𝑥𝑛 = 𝑥0  on a  lim
𝑛→+∞

𝑓(𝑥𝑛) = ℓ 

Example . The function defined by 𝑓(𝑥) = cos
1

𝑥
does not admit a limit or point 𝑥0 = 0. 

Indeed, the following two sequences: 

𝑥𝑛 =
1

2𝑛𝜋
    ,   𝑡𝑛 =

1

(2𝑛 + 1)𝜋
 

Converge towards 𝑥0 = 0. On the other hand, we have: 

lim
𝑛→+∞

𝑓(𝑥𝑛) = lim
𝑛→+∞

cos(2𝑛𝜋) = 1 ≠ −1 = lim
𝑛→+∞

cos((2𝑛 + 1)𝜋) = lim
𝑛→+∞

𝑓(𝑡𝑛) 

Proposition 4. 

Let 𝑓, 𝑔two functions be such that lim
𝑥→𝑥0

𝑓(𝑥) = 𝐴    and lim
𝑥→𝑥0

𝑔(𝑥) = 𝐵, then: 

1) lim
𝑥→𝑥0

( 𝑓(𝑥) + 𝑔(𝑥)) = lim
𝑥→𝑥0

𝑓(𝑥) + lim
𝑥→𝑥0

𝑔(𝑥) = 𝐴 + 𝐵. 

2) lim
𝑥→𝑥0

( 𝑓(𝑥) − 𝑔(𝑥)) = lim
𝑥→𝑥0

𝑓(𝑥) − lim
𝑥→𝑥0

𝑔(𝑥) = 𝐴 − 𝐵. 
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3) lim
𝑥→𝑥0

( 𝑓(𝑥) × 𝑔(𝑥)) = lim
𝑥→𝑥0

𝑓(𝑥) × lim
𝑥→𝑥0

𝑔(𝑥) = 𝐴 × 𝐵. 

4) lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
=

𝐴

𝐵
 ,   𝐵 ≠ 0. 

Theorem 1. (Comparison rule) 

 Let 𝑓, 𝑔two functions be such that : ∀𝑥 ∈ 𝐷, 𝑓(𝑥) ≤ 𝑔(𝑥).   SO : 

lim
𝑥→𝑥0

𝑓(𝑥) ≤ lim
𝑥→𝑥0

𝑔(𝑥). 

 In addition we have: 

lim
𝑥→𝑥0

𝑓(𝑥) = +∞  ⟹   lim
𝑥→𝑥0

𝑔(𝑥) = +∞ . 

 

Theorem 2. (Squeeze’ theorem) 

Consider 𝑓, 𝑔 and ℎ three functions , such as: 

∀𝑥 ∈ 𝐷,   𝑔 ≤ 𝑓 ≤ ℎ         And        lim
𝑥→𝑥0

𝑔(𝑥) = lim
𝑥→𝑥0

ℎ(𝑥) = ℓ. 

So we have : lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. 

Proposition 5 .  (Limit of product) 

Let  𝑓 and 𝑔  two functions, such as𝑔  is bounded and lim
𝑥→𝑥0

𝑓(𝑥) = 0. So : 

𝐥𝐢𝐦
𝑥→𝑥0

𝒇(𝒙)𝒈(𝒙) = 𝟎 

Proposition 6 .  (Limit of composition) 

Let  𝑓 and 𝑔  two functions, such as lim
𝑥→𝑥0

𝑓(𝑥) = ℓ   and lim
𝑡→ℓ

𝑔(𝑡) = L. So : 

𝐥𝐢𝐦
𝒙→𝒙𝟎

𝒈𝝄𝒇(𝒙) = 𝑳 

Special limitations: 

lim
𝑥→0

sin 𝑥

𝑥
= 1                   ,                  lim

𝑥→0

1 − cos 𝑥

𝑥
= 0            

lim
𝑥→∞

(1 +
1

𝑥
)𝑥 = e               ,                  lim

𝑥→0+
(1 + 𝑥)1/𝑥 = e            

lim
𝑥→0

𝑒𝑥 − 1

𝑥
= 1                   ,                  lim

𝑥→0

ln(𝑥 + 1)

𝑥
= 1            

 

 


