University of Jijel - Faculty of exact sciences and computer science Mathematics department

Exercise 01: Prove that the following identities hold for all non-zero natural numbers n :

1) $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
2) $\frac{1}{1.2}+\frac{1}{2.3}+\cdots+\frac{1}{n(n+1)}=1-\frac{1}{n+1}$.

Exercise 02:

1) Prove that for any real number $x \geq-1$ and any natural number n, we have the following Bernoulli's inequality:

$$
(1+x)^{n} \geq 1+n x
$$

2) By applying Bernoulli's inequality, first with $x=\frac{2}{n}$ and then with $x=\frac{-2}{3 n}$ prove that :

$$
1+\frac{2}{n} \geq 3^{\frac{1}{n}} \geq 1+\frac{2}{3 n-2} \text { for } n=1,2,3, \ldots
$$

Exercise 03:

1) Find the integer part of the following numbers:
-9.1,
3.8,
$0.1, \quad \pi$,
e, 11, -3 ,
-4.6.
2) Prove that:
a) $\forall x \in \mathbb{R}:[x+1]=[x]+1$.
b) $\forall x, y \in \mathbb{R}_{+}:[x][y] \leq[x y]$.
c) $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^{*}:\left[\frac{[n x]}{n}\right]=[x]$.
d) $\forall x, y \in \mathbb{R}:[x]+[y] \leq[x+y] \leq[x]+[y]+1$.

Exercise 04: Solve the following inequalities:
a) $|x-2| \leq|x+1|$,
b) $\sqrt{4 x-3}>x$,
c) $\frac{x-1}{x^{2}+4}<\frac{x+1}{x^{2}-4}$,
d) $|x+1|+|x-1|<4$,
e) $\left|17-2 x^{4}\right| \leq 15$,
f) $\left|2 x^{2}-13\right|<5$.

Exercise 05: Rewrite the following inequalities:

1) Without the absolute value sign:

$$
\text { a) }|x-1| \leq 2, \quad \text { b) }|x+5|>3
$$

2) By using the absolute value sign:
a) $-3<x<0$,
b) $1<x+2<4$,
c) $-2 \leq x-1 \leq 5$.

Exercise 06:

1) Prove that the following inequalities hold for all real numbers x and y :
a) $|x+y| \leq|x|+|y|$.
a) $||x|-|y|| \leq|x-y|$.
2) Deduce that:

$$
\forall x, y, z \in \mathbb{R}:|x-z| \leq|x-y|+|y-z|
$$

3) Use the trigonometric inequality to prove that:
a) $|x| \leq 1 \Rightarrow\left|3+x^{3}\right| \leq 4$,
b) $|y|<1 \Rightarrow|3-y|>2$.
4) Are the reverse implications of a) and b) true? (Justify that).

Exercise 07: Prove that for any two real numbers x and y, we have:

$$
\min \{x, y\}=\frac{1}{2}(x+y-|x-y|)
$$

and

$$
\max \{x, y\}=\frac{1}{2}(x+y+|x-y|)
$$

Exercise 08: Prove that $\sqrt{3}$ is an irrational number.

