Chapitre 3:

Equations différentielles d'ordre 2

à coefficients constants

Définitions.

 Les équations différentielles d'ordre 2 (du second ordre) à coefficients constants sont données par la forme

$$ay'' + by' + cy = \varphi(x) \dots \dots \dots \dots \dots (E_s)$$

Avec $\varphi(x)$ est une fonction continue et , $b, c \in \mathbb{R}$.

• L'équation différentielle homogène associée à l'équation (E) est sous la forme

$$ay'' + by' + cy = 0 \dots (E_h)$$

• L'équation caractéristique associé à l'équation (E_h) est donnée par

$$ar^2 + br + c = 0 \dots \dots \dots \dots \dots (E_c)$$

On note $\Delta = b^2 - 4ac$ le discriminant de cette équation.

Résolution de l'équation (E_h) .

Nous avons trois cas:

1er cas. Si $\Delta > 0$, l'équation (E_c) possède deux racines $r_1, r_2 \in \mathbb{R} \ (r_1 \neq r_2)$. Les solutions sont

$$y(x) = k_1 e^{r_1 x} + k_2 e^{r_2 x}$$
 avec $k_1, k_2 \in \mathbb{R}$

2ème cas. Si $\Delta=0$, l'équation (\pmb{E}_c) possède une racine $r_0\in\mathbb{R}$. Les solutions sont données par

$$y(x) = k_1 e^{r_0 x} + k_2 x e^{r_0 x} = (k_1 + k_2 x) e^{r_0 x}$$
 avec $k_1, k_2 \in \mathbb{R}$

3ème cas. Si $\Delta < 0$, l'équation (E_c) possède deux racines complexes conjuguées $r_1 = \alpha + \mathrm{i}\beta$, $r_2 = \alpha - \mathrm{i}\beta$.

Les solutions générales sont données par

$$y(x) = (k_1 \cos(\beta x) + k_2 \sin(\beta x))e^{\alpha x}$$
 avec $k_1, k_2 \in \mathbb{R}$

Résumé.

Δ	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
		- ID	
Racines	$r_1, r_2 \in \mathbb{R} \ (r_1 \neq r_2)$	$r_0 \in \mathbb{R}$	$r_1=lpha+\mathrm{i}eta$, $r_2=lpha-\mathrm{i}eta$
Solution	$y(x) = k_1 e^{r_1 x} + k_2 e^{r_2 x}$	$y(x) = (k_1 + k_2 x)e^{r_0 x}$	$y(x) = (k_1 \cos(\beta x))$
			$+k_2\sin(\beta x))e^{\alpha x}$

Exemples.

1) Soit l'équation différentielle sans second membre : 2y''-3y'+y=0. L'équation caractéristique admet deux racines réelles $r_1=1$, $r_2=2$. Alors la solution est donnée par

$$y(x) = k_1 e^x + k_2 e^{2x}$$
 avec $k_1, k_2 \in \mathbb{R}$

2) Soit l'équation différentielle sans second membre : y''-2y'+y=0 . L'équation caractéristique admet une racine double $r_0=1$. Alors la solution est donnée par

$$y(x) = (k_1 + k_2 x)e^x$$
 avec $k_1, k_2 \in \mathbb{R}$

3) Soit l'équation différentielle sans second membre : y'' - 2y' + 5y = 0. L'équation caractéristique admet deux racines complexes conjuguées $r_1 = 1 + 2i$, $r_2 = 1 - 2i$. Alors la solution est

$$y(x) = (k_1 \cos(2x) + k_2 \sin(2x))e^x$$
 avec $k_1, k_2 \in \mathbb{R}$

Résolution de l'équation (E_s) .

Théorème.

Si y_p est une solution particulière de l'équation (E_s) et y_h est une solution de l'équation (E_h) , alors les solutions générales de (E_s) sont données par :

$$y_g = y_p + y_h$$

Proposition1. Si le second membre de l'équation (E_s) s'écrit : $\varphi(x) = e^{\alpha x} P(x)$ où P est un polynôme et $\alpha \in \mathbb{C}$. Alors la solution particulière est donnée par l'une des formes suivantes :

- $y_p = e^{\alpha x} Q(x)$, si α n'est pas une racine de l'équation $(\boldsymbol{E_c})$.
- $y_p = xe^{\alpha x}Q(x)$, si α est une racine simple de l'équation (\boldsymbol{E}_c) .
- $y_p = x^2 e^{\alpha x} Q(x)$, si α est une racine double de l'équation (\boldsymbol{E}_c) .

où Q est un polynôme tel que deg(Q) = deg(P)

Exemple. Soit l'équation différentielle suivante

$$v'' - 5v' + 6v = (x - 3) e^{2x}$$

L'équation caractéristique admet les racines $r_1=3$ et $r_2=2$. Donc la solution de l'équation homogène est

$$y(x) = k_1 e^{3x} + k_2 e^{2x}$$
 avec $k_1, k_2 \in \mathbb{R}$

Pour chercher une solution particulière de l'équation avec second membre, on remarque que $\alpha=2$ est une racine simple de l'équation caractéristique. Donc on cherche la solution sous la forme :

$$y_p = xe^{2x}Q(x)$$

où Q est un polynôme tel que $\deg(Q)=\deg(P)=1$ (ici P(x)=x-3). C'est-à-dire Q(x)=ax+b, d'où :

$$y_p = e^{2x}(ax^2 + bx)$$

On dérive, on trouve

$$y'_p = e^{2x}(2ax^2 + 2(a+b)x + b)$$
 , $y''_p = e^{2x}(4ax^2 + 4(2a+b)x + 2(a+b))$

On remplace dans l'équation différentielle, on trouve

$$\begin{cases} a = -\frac{1}{2} \\ b = \frac{2}{3} \end{cases}$$

Alors
$$y_p = e^{2x}(-\frac{1}{2}x^2 + \frac{2}{3}x)$$

Enfin, la solution générale de l'équation avec second membre est

$$y_g = y_p + y_h = e^{2x} \left(-\frac{1}{2}x^2 + \frac{2}{3}x \right) + k_1 e^{3x} + k_2 e^{2x}$$
 avec $k_1, k_2 \in \mathbb{R}$

Proposition2.

Si le second membre de l'équation (E_s) s'écrit

$$\varphi(x) = e^{\alpha x} (P_1(x) \cos(\beta x) + P_2(x) \sin(\beta x))$$

où P_1, P_2 sont des polynômes et $\alpha, \beta \in \mathbb{R}$. Alors la solution particulière est donnée par l'une des formes suivantes :

- $y_p = e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$, si $\alpha + \mathrm{i}\beta$ n'est pas une racine de l'équation $(\boldsymbol{E_c})$.
- $y_p = xe^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$, si $\alpha + \mathrm{i}\beta$ est une racine de l'équation $(\boldsymbol{E_c})$.

où Q_1 , Q_2 sont des polynômes tel que

$$\deg(Q_1) = \deg(Q_2) = \max\{\deg(P_1), \deg(P_2)\}$$

Méthode de variation des constantes.

On suppose que les constantes k_1 et k_2 sont des fonctions inconnues, et on cherche la solution générale de l'équation (\pmb{E}_s) sous la forme :

$$y(x) = k_1(x)y_1(x) + k_2y_2(x)$$

Avec $y_1(x)$, $y_2(x)$ sont les fonctions données par l'équation homogène (E_h). Dans ce cas nous avons le système suivant

$$\begin{cases} k'_1(x)y_1(x) + k'_2y_2(x) = 0\\ k'_1(x)y'_1(x) + k'_2y'_2(x) = \frac{\varphi(x)}{a} \end{cases}$$

Exemple. Déterminer les solutions de l'équation différentielle ordinaire d'ordre 2

$$y'' - y = \frac{1}{e^x + 2}$$

L'équation homogène y'' - y = 0 admet pour solution

$$y_h = k_1 e^{-x} + k_2 e^x$$
 avec $k_1, k_2 \in \mathbb{R}$

On cherche la solution particulière sous la forme $y_p=u(x)e^{-x}+v(x)e^x$, telle que u et v sont des fonctions à déterminer vérifiant :

$$\begin{cases} u'e^{-x} + v'e^{x} = 0\\ -u'e^{-x} + v'e^{x} = \frac{1}{e^{x} + 2} \end{cases}$$

Alors, on trouve : $u'(x) = \frac{e^x}{2(e^x + 2)}$, $v'(x) = \frac{e^{-x}}{2(e^x + 2)}$

En utilisant le changement de variable $= e^x$, on aura

$$u(x) = \int \frac{e^x}{2(e^x + 2)} dx = -\frac{1}{2} \ln(e^x + 2)$$

$$v(x) = \int \frac{e^{-x}}{2(e^x + 2)} dx = \frac{1}{4} (-x + \ln(e^x + 2) - 2e^{-x})$$

Finalement, la solution générale

$$y_g = k_1 e^{-x} + k_2 e^x + \ln(e^x + 2) \left(\frac{e^x}{4} - \frac{e^{-x}}{2}\right) - \frac{xe^x}{4} - \frac{1}{2}$$