
Jijel University
Faculty of exact sciences and computer science

Department of computer science

Compilation December 30, 2020

Top-DownAnalysis

Dr. Hamida Bouaziz

Sommaire

Introduction

The predictive Top-DownAnalysis

The predictive table
Computation of FIRST
Computation of FOLLOW
Predictive table construction algorithm

LL(1) analysis

The operation of a LL(1) table-driven predictive parser(1)

Dr. Hamida Bouaziz compiling 2 / 28

INTRODUCTION

I Top-Down parsing is a kind of syntactic analysis that
attempts to find the left-most derivations for an input
string w.

I It is equivalent to constructing a parse tree for the input
string w that starts from the root and creates the nodes of
the parse tree in a predefined order.

I The reason that top-down parsing seeks the left-most
derivations for an input string and not right-most
derivations is that the input string is scanned by the parser
from the left to the right, one token at a time.

I One of themost efficient deterministic Top-down parsing
methods currently known is: The predictive Top-Down
Analysis.

Dr. Hamida Bouaziz compiling 3 / 28

THE PREDICTIVE TOP-DOWNANALYSIS

I A backtracking parser is a non-deterministic recognizer
of the language generated by a grammar.

I By carefully writing a grammar, you can get a top-down
analysis without any backtrack, i.e. get a deterministic or
a predictive analyzer.

I The predictive parser is capable of predicting which
alternatives are the right choice for the expansion of
non-terminals. In this case, writing carefully a grammar,
means eliminating the left-recursion of the grammar
and left-factoring the result.

I In this kind of analysis, a table called predictive table is
used.

Dr. Hamida Bouaziz compiling 4 / 28

THE PREDICTIVE TABLE

Let a grammar G=⟨Vt, VN, S, R ⟩.
The predictive table of G is a two dimensional table, where:
I The rows represent the non-terminal symbols VN of G.

I The columns are indexed by the terminal symbols Vt of G
and the # symbol (Vt∪{#}). # marks the end.

I The cells of the table may contain production rules of G.
The first phase of building such table is the computation of the
sets FIRST and FOLLOW of each symbol in VN.

Dr. Hamida Bouaziz compiling 5 / 28

COMPUTATION OF FIRST

Five cases are considered:
1. If A→ α1|α2|...|αn then FIRST(A)=FIRST(α1) ∪ FIRST(α2) ∪

... ∪ FIRST(αn).
2. FIRST(a) ={a}. where a∈Vt

3. FIRST(aγ) ={a}. where a∈Vt and γ ∈ (Vt∪VN)∗.
4. FIRST(ε)={ε}
5. FIRST(Bx1...xn)⊃ FIRST(B) \ {ε} , where B∈VN and Xi ∈

(Vt∪VN)∗.
I If ε ∈ FIRST(B) then FIRST(Bx1...xn)⊃ FIRST(x1) \ {ε}

I If ε ∈ FIRST(x1) then FIRST(Bx1...xn)⊃ FIRST(x2) \ {ε}

I

I If ε ∈ FIRST(xn) then ε ∈ FIRST(Bx1...xn).

Dr. Hamida Bouaziz compiling 6 / 28

COMPUTATION OF FIRST(2)

Example

Consider G a CFG: G=⟨Vt, VN, Expression, R ⟩, where:
I Vt={+, *, (,), identifier}

I VN={Expression, Term, AS, MS, Factor}

I R={
Expression→ Term AS
AS→ + Term AS | ε
Term→ Factor MS
MS→ * Factor MS | ε
Factor→ identifier | (Expression)
}

Dr. Hamida Bouaziz compiling 7 / 28

COMPUTATION OF FIRST(3)

Example(2)

Computation of FIRST sets:
I FIRST(Expression)= FIRST(Term AS) =

FIRST(Term) = {identifier, (}

I FIRST(AS)= FIRST(+Term AS) ∪ FIRST(ε) = {+, ε}

I FIRST(Term)= FIRST(Factor MS) = {identifier, (}

I FIRST(MS)= FIRST(*Term MS) ∪ FIRST(ε) = {*, ε}

I FIRST(Factor)= FIRST(identifier) ∪ FIRST(
(Expression)) = {identifier, (}

Dr. Hamida Bouaziz compiling 8 / 28

COMPUTATION OF FOLLOW

The compute the set FOLLOW(A), the following steps are
repeated until stabilization:
1. If A=S (i.e. A is the start symbol) then # ∈ FOLLOW(A).
2. If B→ αAβ with A,B∈VN and α, β ∈ (Vt∪VN)∗

FIRST(β) \ {ε}⊂ FOLLOW(A)
If ε ∈ FIRST(β) then:

FOLLOW(B)⊂ FOLLOW(A)
3. If B→ αA then

FOLLOW(B)⊂ FOLLOW(A)

Dr. Hamida Bouaziz compiling 9 / 28

COMPUTATION OF FOLLOW(2)

Example

Consider the grammar of the previous example. Now, we
compute the FOLLOW sets:
I FOLLOW(Expression)= { # } ∪ {)} = {#,) }

I FOLLOW(AS)= FOLLOW(Expression) = {#,) }

I FOLLOW(Term)= FIRST(AS) {ε} ∪
FOLLOW(AS)ε∈FIRST(AS) = { +, #,) }

I FOLLOW(MS)= FOLLOW(Term) = { +, #,) }

I FOLLOW(Factor)= FIRST(MS) {ε} ∪
FOLLOW(Term)ε∈FIRST(MS) ∪ FOLLOW(MS)ε∈FIRST(MS)
= { *, +, #,) }

Dr. Hamida Bouaziz compiling 10 / 28

PREDICTIVE TABLE CONSTRUCTION ALGORITHM

To build the predictive table, The following algorithm is used:

1: for (each rule of the formA→α) do
2: if (α ̸= ε) then
3: put A→ α in all cells T[A,a], where a ∈ FIRST(α);
4: else
5: put A→ α in all cells T[A,b], where b∈ FOLLOW(A);

I All empty cells correspond to a syntactic error.

I If each cell of the table contains at most one production
then the grammar is considered as a LL(1) grammar.

Dr. Hamida Bouaziz compiling 11 / 28

PREDICTIVE TABLE CONSTRUCTION ALGORITHM(2)

Example

To build the predictive analysis table of the
grammar, already described in the previous ex-
amples, we use the FIRST and FOLLOW sets:

FIRST FOLLOW
Expression identifier (#)
AS + ε #)
Term identifier (+ #)
MS * ε + #)
Factor identifier (* + #)

The predictive table is the following:
+ * () identifier #

Expression R 1 R 1
AS R 2.1 R 2.2 R 2.2
Term R 3 R 3
MS R 4.2 R 4.1 R 4.2 R 4.2

Factor R 6 R 5

Dr. Hamida Bouaziz compiling 12 / 28

LL(1) ANALYSIS

LL (1) is a predictive analysis based on the construction of a
predictive analysis table for an LL (1) grammar. The LL (1)
analysis is done deterministically by reading a single token at
a time in the sentence to be analyzed. Themeaning of letters LL
(1) is:
I L (Left to right): read the sentence to be analyzed from the

left to the right.

I L (Left most derivation): derive the sentence by executing
the left most derivation.

I 1: The parser needs to read only one token to decide which
grammar's rule must be executed.

Dr. Hamida Bouaziz compiling 13 / 28

FORMAL DEFINITION OF LL(1) GRAMMAR

A context-free grammar G=⟨Vt, VN, S, R ⟩ is said LL(1) iff it
verifies the following conditions:
For each rule of the formA→ α | β:
I FIRST(α) ∩ FIRST(β) = ∅

I If α→∗ ε then β ⇍⇒ ∗ ε

I If α→∗ ε then FIRST(α) ∩ FOLLOW(A) =∅
Note:
I A left-recursive grammar is not an LL(1) grammar.

I A non left-factorized grammar is not an LL(1) grammar.

I The previous two conditions are necessary for a grammar
to be LL(1).

Dr. Hamida Bouaziz compiling 14 / 28

FORMAL DEFINITION OF LL(1) GRAMMAR(2)

Example

Consider the previous grammar which is factorized and
not left-recursive:
We have two rules that take the formA→α | β which are:
I AS→ * TermAS | ε

I FIRST(+TermAS) ∩ FIRST (ε)={+} ∪ {ε}= ∅. Thus,
condition 1 of LL(1) grammars is verified

I The second production of AS derive to ε. However,
the first one does not. Thus, condition 2 of LL(1)
grammars is verified.

I The first production does not derive to ε. However,
the second production do. So, wemust verify the
intersection between the two sets FIRST(+ TermAS)
and FOLLOW(AS). The intersection is equal to {+} ∩
{#,)} =∅. Thus, condition 3 of LL(1) grammars is
fulfilled.

Dr. Hamida Bouaziz compiling 15 / 28

FORMAL DEFINITION OF LL(1) GRAMMAR(3)

Example(2)
I MS→ + FactorMS | ε

I FIRST(* Factor MS) ∩ FIRST (ε)={*} ∪ {ε}= ∅. Thus,
condition 1 of LL(1) grammars is verified

I The second production of MS derive to ε. However,
the first one does not. Thus, condition 2 of LL(1)
grammars is verified.

I The first production does not derive to ε. However,
the second production do. So, wemust verify the
intersection between the two sets FIRST(* Factor MS)
and FOLLOW(MS). The intersection is equal to {*} ∩
{+,#,)} =∅. Thus, condition 3 of LL(1) grammars is
fulfilled.

Thus, we conclude that grammar is LL(1).

Dr. Hamida Bouaziz compiling 16 / 28

FORMAL DEFINITION OF LL(1) GRAMMAR(4)

Example(1)

Consider the grammar G=⟨ {a,b,c}, {S,A,B,C}, S, R ⟩, where:
R={S→ABc | aSc, A→ ε | aAB, B→ bC | ε, C→ Bc | aC | ε }
is G LL(1)?
I G is not left-recursive.

I G is factorized.

I The two previous criteria are necessary for a
grammar to be LL(1) but not sufficient. Thus, we
need to verify the aforementioned conditions.

Dr. Hamida Bouaziz compiling 17 / 28

FORMAL DEFINITION OF LL(1) GRAMMAR(5)

Example(2)

For the rules S→ABc | aSc :
I FIRST(ABc)= FIRST(A) {ε} ∪ FIRST(B) {ε}∪ FIRST(c)=

{a}∪{b}∪{c} = {a, b, c}

I FIRST(aSc) = {a}
FIRST(ABc) ∩ FIRST(aSc) = {a}.
The first condition of LL(1) grammars is not verified.
Thus, this grammar is not LL(1).

Dr. Hamida Bouaziz compiling 18 / 28

THE OPERATION OF A LL(1) TABLE-DRIVEN PREDICTIVE PARSER

I The implementation of a LL(1) parser may be done using a
stack.

I By having an LL(1) grammar G and a sentence w, the
analyzer determines which production of G to be applied.

I The analysis starts from the start Symbol S of G, and goes
on until the construction of sentence w.

I To determine the rule to be applied, the parser consults the
predictive table of G.

Dr. Hamida Bouaziz compiling 19 / 28

THE OPERATION OF A LL(1) TABLE-DRIVEN PREDICTIVE PARSER(2)

I We have an input string. The input string ends with the
endmark #. The stack at a givenmoment contains
grammar symbols with the symbol #. # marks the bottom
of the stack.

I Initially, the stack contains the start symbol S of the
grammar above the # symbol.

I At each step of the analysis, one of the following 6 cases
may be encountered:
I The element on the top of the stack is a terminal. Thus:

I If this element is the same as the current token (case1), then
go to the next token in the string to be analyzed.

I Otherwise (case2), stop the analysis and report a syntactic
error.

Dr. Hamida Bouaziz compiling 20 / 28

THE OPERATION OF A LL(1) TABLE-DRIVEN PREDICTIVE PARSER(3)

I The element on the top of the stack is a non-terminal.
Thus:
I If the cell of the predictive table, indexed by the this non

terminal and the current token, is empty (case3), stop the
analysis and report a syntactic error.

I Otherwise (case4), this non-terminal must be unstacked
and replaced by themirror of the right hand side of the rule
in the cell of the analysis table.

I The element on the top of the stack is the symbol #, thus:
I If the current token is the symbol # (case5), then stop the

analysis and declare that the string is accepted.

I Otherwise (case6), stop the analysis and report a syntactic
error.

Dr. Hamida Bouaziz compiling 21 / 28

THE OPERATION OF A LL(1) TABLE-DRIVEN PREDICTIVE PARSER(4)

Example

Consider the following arithmetic expression:

((a+b)*c)

Expression

Term

factor

(Expression

Term

Factor

(Expression

Term

Factor

identifier

a

MS

ε

AS

+ Term

Factor

identifier

b

MS

ε

AS

ε

)

MS

* Factor

identifier

c

MS

ε

AS

ε

)

MS

ε

AS

ε

Dr. Hamida Bouaziz compiling 22 / 28

THE OPERATION OF A LL(1) TABLE-DRIVEN PREDICTIVE PARSER(5)

Input Buffer Stack action rule
((a+b)*c)# # Expression production Expression→TermAS
((a+b)*c)# #AS Term production Term→Factor MS
((a+b)*c)# #ASMS Factor production Factor→(Expression)
((a+b)*c)# #ASMS) Expression (matching
(a+b)*c)# #ASMS) Expression production Expression→TermAS
(a+b)*c)# #ASMS) AS Term production Term→Factor MS
(a+b)*c)# #ASMS) ASMS Factor production Factor→(Expression)
(a+b)*c)# #ASMS) ASMS) Expression (matching
a+b)*c)# #ASMS) ASMS) Expression production Expression→TermAS
a+b)*c)# #ASMS) ASMS) AS Term production Term→Factor MS
a+b)*c)# #ASMS) ASMS) ASMS Factor production Factor→identifier
a+b)*c)# #ASMS) ASMS) ASMS identifier matching
+b)*c)# #ASMS) ASMS) ASMS production MS→ε
+b)*c)# #ASMS) ASMS) AS production AS→+ TermAS
+b)*c)# #ASMS) ASMS) AS Term + matching
b)*c)# #ASMS) ASMS) AS Term production Term→Factor MS
b)*c)# #ASMS) ASMS) ASMS Factor production Factor→identifier
b)*c)# #ASMS) ASMS) ASMS identifier matching
)*c)# #ASMS) ASMS) ASMS production MS→ε
)*c)# #ASMS) ASMS) AS production AS→ε
)*c)# #ASMS) ASMS) matching
c)# #ASMS) ASMS production MS→ Factor MS
*c)# #ASMS) ASMS Factor * matching
c)# #ASMS) ASMS Factor production Factor→identifier

Dr. Hamida Bouaziz compiling 23 / 28

THE OPERATION OF A LL(1) TABLE-DRIVEN PREDICTIVE PARSER(6)

c)# #ASMS) ASMS identifier matching
)# #ASMS) ASMS production MS→ε
)# #ASMS) AS production AS→ε
)# #ASMS) matching
#ASMS production MS→ε
#AS production AS→ε
accept

Dr. Hamida Bouaziz compiling 24 / 28

	Introduction
	The predictive Top-Down Analysis
	The predictive table
	Computation of FIRST
	Computation of FOLLOW
	Predictive table construction algorithm

	LL(1) analysis
	The operation of a LL(1) table-driven predictive parser(1)

