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Le paradigme déclaratif exprime la logique d'un calcul sans décrire son

flux de contrôle.

-- Requête sql

SELECT first_name, last_name, age FROM Customers WHERE age>25 ;

Il se concentre sur ce que le programme devrait accomplir (quoi ? ).



Chapitre 4
Programmation Fonctionnelle
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“ You will learn an entirely new way of thinking. Your 

brain is going to rebel a little. Just keep moving 

forward ! ” 
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La programmation fonctionnelle : Pourquoi faire compliqué 
quand on peut faire simple ? 
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// Langage de programmation C

int isEven(int v) {

return v%2 == 0;

}

int main(){

int array [5] = {1,2,3,4,5};

int evens[] = {};

int pos = 0;

for (int i = 0; i < 5; i++) {

if (isEven(array[i])==1){

evens[pos] = array[i];

pos = pos+1;

}

}

return 0;

}

La programmation procédurale

// Langage de programmation Javascript

let isEven = function(v) {

return v % 2 == 0;

}

let array = [1,2,3,4,5];

let evens = array.filter(isEven);

La programmation fonctionnelle

Les nombres paires dans un tableau …
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La source d’inspiration de la programmation fonctionnelle 
sont les mathématiques.

Simplicité 
= math ?
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Données Résultats

Une fonction prend des valeurs en entrée (paramètres), effectue des calcules (traitements) et génère un

résultat (valeur de retour).

Principe de base

Fondamental

Le principe central de la programmation fonctionnelle : tout est fonction !
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Fonction au sens 
mathématique

Principe de base

int swap(int* a, int* b){

int tmp = *a;

*a = *b;

*b = temp;

printf("%d, %d",a,b);

return 1;

}

f(x) = x²

f(1) = 1

f(2) = 4

f(3) = 6

f(4) = 16

f(5) = 25

………

Fonction au sens 
informatique

La différence ????



Le principe mathématique de la fonction : les fonctions ne vont pas modifier des variables, écrire sur un

écran, interroger une base de données, etc.
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Principe de base

La différence ????

Fondamental

Dans la programmation fonctionnelle, c’est la même chose ! Les fonctions n’effectuent que des

traitements qui retournent un résultat.
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Principe de base

Pas de fichiers !!

Pas d’événements !!

Pas de bases de données !!

Pas de …. !!

Concrètement
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Principe de base

Quel est l’intérêt d’un programme qui ne fait 
rien que retourner des valeurs ?
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Principe de base

Le calcul distribué

Tâche 
1

Tâche 
2

Temps

Temps

Tâ
ch

e
 1

Tâ
ch

e
 2

Le calcul des formules 

complexes

La gestion des threads 

(synchronisation)

Des situations où la paradigme fonctionnel est plus adapté qu'un autre paradigme de 
programmation …
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Principe de base

Cours EPD Jijel 
IA Jijel EPD  

EPD IA Cours 

Cours EPD Jijel

IA Jijel EPD

EPD IA Cours 

Cours, 1
EPD, 1  
Jijel, 1 

IA, 1
Jijel, 1  
EPD, 1 

EPD, 1
IA, 1  

Cours, 1 
 

Cours, 1
Cours, 1  

EPD, 1
EPD, 1
EPD, 1  

Jijel, 1
Jijel, 1 

IA, 1
IA, 1

Cours, 2  

EPD, 3  

Jijel, 2  

IA, 2  

Cours, 2
EPD,3
Jijel, 2
IA, 2  

Input Split Map shuffle/Sort Reduce Output

Exemple : traiter en parallèle  une quantité importante de données dans un contexte « Big data » …
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Concepts 
de la PF

Récursivité

Fonction de 
première classe

Données 
immutables

Fonction d'ordre 
supérieur

Fonction 
pure

Évaluation 
paresseuse

Concepts de la programmation fonctionnelle
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Concepts 
de la PF

Fonction de 
première classe
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Fonction de première classe

Att_1: String

Att_2 : int

Att_3 : double 

Att_4 : float

Attributs :

Méthodes :

static int mClasse()

int mInstance_2 ()

void mInstance_1 ()

La classe CC

Le concept de 
méthode en POO Méthode d'instance : elle est liée à un objet (elle

agit sur un objet).

Méthode de classe : elle est indépendante des

objets, mais elle reste néanmoins liée à la classe.

Le paradigme fonctionnel nous offre la possibilité de se 
libérer de ce lien (on parle de fonction et non de méthode).
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Fonction de première classe

La fonction en programmation fonctionnelle 
est une valeur à part entière …
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Fonction de première classe

La fonction en PF est une valeur à part entière

Fondamental

Dans le paradigme fonctionnel, les fonctions sont des valeurs de première classe : elles sont considérées

comme n'importe quel autre type de variable .

boolean, string, float, int , … , functionListe de types :  



Une fonction peut être affectée en tant que valeur à une variable, transmise en tant que paramètre à d'autres

fonctions ou retournée comme résultat par une autre fonction.
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Fonction de première classe

La fonction en PF est une valeur à part entière

Fondamental

Dans le paradigme fonctionnel, les fonctions sont des valeurs de première classe : elles sont considérées

comme n'importe quel autre type de variable .
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Fonction de première classe

function f(x){

return x*3;

}

console.log(f(2));

var tripleVar = function (x){

return x*3;

}

console.log(tripleVar(2));

Une fonction 

anonyme

Variable

Exemple : JavaScript traite les fonctions comme des types de première 
classe. 

6

Une fonction peut être affectée en tant que valeur
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Fonction de première classe

Exemple : JavaScript traite les fonctions comme des types de première 
classe. 

listOfElement = [1,2,3];

function printElement(element){

console.log(element);

}

function actionToList(list,myFunction){

list.forEach(myFunction);

}

actionToList(listOfElement,printElement);

Une fonction est transmise en 

tant que paramètre.

1 
2 
3
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Fonction de première classe

Exemple : JavaScript traite les fonctions comme des types de première 
classe. 

function random() {

return Math.random();

}

function magic() {

return random();

}

console.log(magic());

Une fonction est  retournée 

comme résultat d’une autre 

fonction

0.44874968444293595 
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Fonction de première classe

Quel est l’intérêt par rapport à une 
méthode ?
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Fonction de première classe

Une nouvelle étendue de 
possibilités : des fonctions d’ordre 

supérieur …



Programmation Fonctionnelle 27

Concepts 
de la PF

Fonction de 
première classe

Fonction d'ordre 
supérieur
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Fonction d'ordre supérieur

//code impératif 

var tab = [1,2,3,4,5,6];

var tripleResult = [];

for(var i = 0; i  < tab.length; i++) {

tripleResult [i] = tab[i] * 3 ;

}

Imaginez le scénario suivant …

1 2 3 4 5 6

3 6 9 12 15 18

Liste d’entiers

multiplier tous les éléments 
par un entier (p. ex 3)
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Fonction d'ordre supérieur

Imaginez le scénario suivant …

Pourquoi faire compliqué quand on peut faire simple ? 
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Fonction d'ordre supérieur

Imaginez le scénario suivant …

6

var tab = [1,2,3,4,5,6];

function triple(elem){

return elem*3;

}

console.log(triple(2));

Pourquoi ne pas simplement appliquer la fonction triple à ma 
liste ? 

function applyToList(list,myFunction){

list.forEach(myFunction);

}

applyToList(tab, triple);

Quelque chose comme ça …
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Fonction d'ordre supérieur

Imaginez le scénario suivant …

Ils ont pensé à nous !!!!
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Fonction d'ordre supérieur

//code impératif 

var tab = [1,2,3,4,5,6];

var tripleResult = [];

for(var i = 0; i  < tab.length; i++) {

tripleResult [i] = tab[i] * 3 ;

}

Donc pour faire ceci en programmation fonctionnelle … 

1 2 3 4 5 6

3 6 9 12 15 18

Liste d’entiers

multiplier tous les éléments 
par un entier (p. ex 3)
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Fonction d'ordre supérieur

var tab = [1,2,3,4,5,6];

function triple(elem){

return elem*3;

}

var tripleResult = tab.map(triple)

console.log(tripleResult);

[ 3, 6, 9, 12, 15, 18 ]

map applique la fonction triple sur tous 

les éléments du tableau « tab ».

La fonction d’ordre supérieur  map. 

map (*3) [1,2,3,4,5,6]

Le langage de programmation utilisé est :

Javascript.

Attention



Des fonctions qui reçoivent ou produisent d’autres fonctions
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Fonction d'ordre supérieur

Dans le paradigme fonctionnel, les fonctions peuvent :

➢ (1) prendre des fonctions comme arguments.

➢ (2) retourner des fonctions comme résultats.

Rappel

Fondamental

Une fonction d'ordre supérieur est une fonction qui a au moins une des deux propriétés précédentes.
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Fonction d'ordre supérieur

//code impératif 

var tab = [1,2,3,4,5,6];

result = 0;

for(var i = 0; i  < tab.length; i++) {

result = result + tab[i];

}

1 2 3 4 5 6

21

Liste d’entiers

Calculer la somme de tous les 
élément (réduire la liste à une 

seule valeur.)

La fonction d’ordre supérieur reduce. 
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Fonction d'ordre supérieur

var tab = [1,2,3,4,5,6];

function sum(result,elem){

return result+elem;

}

var sumOfArray = tab.reduce(sum,0)

console.log(sumOfArray);

21

reduce applique la fonction sum sur tous les 

éléments du tableau « tab » afin de le réduire à une 

seule valeur.

La fonction d’ordre supérieur reduce. 

La valeur initiale de 

l’accumulateur result

reduce (+,0) [1,2,3,4,5,6]
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Fonction d'ordre supérieur

//code impératif 

pos = 0;

var filtredResult = [];

for(var i = 0; i  < tab.length; i++) {

if (tab[i]>3){

filtredResult[pos] = tab[i] ;

pos = pos + 1;

}

}

1 2 3 4 5 6

Liste d’entiers

Retourner tous les éléments 
qui remplissent une condition 

(p.ex. elem>3) 

3 4 5 6

La fonction d’ordre supérieur filter. 
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Fonction d'ordre supérieur

var tab = [1,2,3,4,5,6];

function cond(elem){

return elem>3;

}

var filtredResult = tab.filter(cond)

console.log(filtredResult);

[ 4, 5, 6 ]

filter applique la fonction cond sur tous les

éléments du tableau « tab » pour retourner

tous les éléments qui remplissent la

condition déterminée par cette fonction

La fonction d’ordre supérieur filter. 

filter (>3) [1,2,3,4,5,6]
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Exercice : Appliquer la notion
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Fonction d'ordre supérieur

Exercice : Appliquer la notion

const users = [

{ name: 'Ali', age: 25 },

{ name: 'Salim', age: 30 },

{ name: 'Yassine', age: 35 },

];

function getName(user) {

return user.name;

}

const names = users.map(getName);

console.log(names); 

['Ali', 'Salim', 'Yassine']

const numbers = [1, 2, 3, 4, 5];

const doubled = numbers.map(num => num * 2);

console.log(doubled); 

[2, 4, 6, 8, 10]

Arrow functions / 

lambda expressions
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Fonction d'ordre supérieur

Exercice : Appliquer la notion

const numbers = [1, -2, 3, -4, 5, -6];

function isNegative(num) {

return num < 0;

}

const negativeNbrs = numbers.filter(isNegative);

console.log(negativeNbrs);

[-2, -4, -6]

const users = [

{ name: 'Ali', age: 25 },

{ name: 'Salim', age: 30 },

{ name: 'Yassine', age: 35 },

];

const olderUsers = users.filter(user => user.age > 30);

console.log(olderUsers); 

[{ name: 'Yassine', age: 35 }]
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Concepts 
de la PF

Fonction de 
première classe

Données 
immutables

Fonction d'ordre 
supérieur
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Données immutables

Une variable immutable (immuable) (cannot change) est une variable qui ne peut pas être modifiée une fois la

variable initialisée.

Rappel

Immutability is a distinct notion than that of a constant : “Constants are immutable in the sense that they 

cannot change. However, immutability refers to values, not to the assignment of values”.

Attention

s est immutable

String s = "x"; 

s=s+"y" ; 

StringBuilder s = new StringBuilder "x";

s.append("y") ; 

s est mutable
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Données immutables

String s = "x"; //1

s=s+"y" ; //2

String t = s; //3

t=t+"z" ; //4
String

“x”
String
“xy”

s

String
“xyz”

t
1 3 42

Le type « String » en Java est immutable !

Les variables de type « String » en Java sont immutables, c'est-à-dire que vous ne pouvez pas les

modifier. Ainsi, la modification d’une chaine de caractère de ce type (p. ex en utilisant l'opérateur de concaténation

ou une méthode comme toUpperCase) génère une nouvelle chaîne de caractère, au lieu de modifier le contenu de la

chaîne existante.



String
“xy” “x” 
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Données immutables

StringBuilder s = new StringBuilder "x"; //1

s.append("y") ; 

StringBuilder sb = s ; //2

sb.append("z") ; 

s sb

1

“xyz”

2

Le type « StringBuilder » en Java est mutable !

Les variables de type « StringBuilder » en Java sont mutables, c'est-à-dire que vous pouvez les modifier sans

aucun problème. Ainsi, la modification d’une chaine de caractère de ce type modifie le contenu de la chaîne

existante.
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Données immutables

Les types mutables semblent beaucoup plus puissants 
que les types immutables ...
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Données immutables

String s = "";

for (int i = 0; i < n; ++i) {

s = s + n;

}

StringBuilder sb = new StringBuilder();

for (int i = 0; i < n; ++i) {

sb.append(String.valueOf(i));

}

Imaginez le scénario suivant …

Gros défaut des données immutables : pour la modification des données immutables vous êtes obligé de créer

d’autres copies de ces données = Problème de performance (l'utilisation élevée de la mémoire).

Attention
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Données immutables

Les types mutables semblent beaucoup plus puissants 
que les types immutables, mais les types immuables 

sont plus sûrs et plus faciles à comprendre.
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Données immutables

Une chaîne de caractères littérale : est une séquence de caractères placée entre guillemets (" ") (p. ex. "Xyz").

Rappel

Pour des raisons d’optimisation en Java (gain d'espace et réduction de l'utilisation de la mémoire), les

références vers des chaînes littérales identiques pointent vers un même String. P. ex. ici, "IA" et "IA" sont deux

chaînes littérales identiques, s1 et s2 pointent donc vers un même String.

String s1 = "IA";

String s2 = "Java";

String s3 = "IA";

System.out.println(s1==s3);

True
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Données immutables

La classe String maintient un pool pour les chaînes de caractères littérales.

String pool
String s1 = "IA";

String s2 = "Java";

Java Heap

String s3 = "IA";

String s4 = new String("Java");

Pour la création d’une chaîne de

caractères littérale, le système recherche une

chaîne ayant la même valeur dans le pool.

➢ s'il la trouve, il renvoie simplement la

référence

➢ sinon il crée une nouvelle chaîne dans

le pool et renvoie sa référence.

Rappel

IA

Java

Java
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Données immutables

String pool

Pass1234

String passUser1 = "Pass1234";

Java Heap

String passUser2 = "Pass1234";

String passUser3 = "Pass1234";

Abc5000

Imaginez le scénario suivant : la gestion des mots de passe …

Si l’utilisateur « User 1 » veut changer son 

mot de passe, que se passe-t-il si « String » 

était un type mutable ? 

passUser1 = "Abc5000";
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Données immutables

Imaginez le scénario suivant : la gestion des mots de passe …

String pool

Pass1234

Abc5000

String passUser1 = "Pass1234";

Java Heap

String passUser2 = "Pass1234";

String passUser3 = "Pass1234";

passUser1 = "Abc5000";

Heureusement « String » est immutable ! 
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Données immutables

Les variables de type « String » sont largement utilisées comme paramètres pour de nombreuses classes Java

(par ex. le port et l’adresse de l'hôte pour ouvrir une connexion réseau, le chemin des fichiers à lire, l’identifiant et

le mot de passe pour établir la connexion avec une base de données, ….)

Simplifier la gestion d’un état partagé (des variables thread-safe) : un type « String » mutable pourrait bien

causer de sérieuses menaces de sécurité à nos applications.

Attention

Immutable types are safer, and easier to understand
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Concepts 
de la PF

Fonction de 
première classe

Données 
immutables

Fonction d'ordre 
supérieur

Fonction 
pure
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Fonction pure

Vers la transparence référentielle : adieu les effets de bord !

Fondamental

Les fonctions pures sont inspirées des fonctions mathématiques. Ainsi, elles possèdent deux propriétés:

➢ (1) Aucune mutation : elle retourne la même valeur pour les mêmes arguments (transparence

référentielle).

➢ (2) Aucune influence extérieure : elles n’engendre pas d’effet de bord (Side-effect free).

L’effet de bord « side effect » : on parle d’un effet de bord lorsque l’exécution d’un sous-programme cause la

modification d’un état (variable) en dehors de son environnement local.

Rappel
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Fonction pure

Fonction 
pure

Always produce the same 
output for same arguments 
irrespective of anything else.

They have no side-effects
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Fonction pure

int triple(int elem){

return elem*3;

}

Triple

Résultats prédictibles : ils seront toujours les 
mêmes quoi qu’il arrive.

4
6
7

4

12
18
21

12

int getSolde(String compte){

//requête SQL

}

Résultats imprédictibles : ils viennent d’une base 
de données qui peut changer d’états.

getSolde

200C1 0
1500
1200

2000

250C6
150C5

200C1
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Fonction pure

Pure function are predictable, clean, transparent and safe : 

➢ Easier to read.

➢ Easier to refactor.

➢ Easier to debug.

➢ Easier to test.

➢ Do not depend on anything else, so you don't have to care about time or the order of execution.

➢ Eencourage safe ways of programming (Thread-safe).
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Fonction pure

“Keep It Simple and Stupid” 

is an important design principle in computer science. 

Wherever possible, you should use pure 
functions in your applications !

Pure functions are simple and stupid in the best 
possible way. 
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Exercice : Appliquer la notion
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Fonction pure

public int factorial(int a){

int i,f;

f=1;

for(i=1;i<=a;i++)

f=f*i;

return f;

}

Pure Impure

Exercice : Appliquer la notion

var init = 0;

function add(a,b){

init =1;

return a + b + init

}

Pure Impure
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Fonction pure

Exercice : Appliquer la notion

Solution
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Fonction pure

public int factorial(int a){

int i;

f=1;

for(i=1;i<=a;i++)

f=f*i;

return f;

}

Pure Impure

Exercice : Appliquer la notion

var init = 0;

function add(a,b){

init =1;

return a + b + init

}

Pure Impure



Programmation Fonctionnelle 64

Fonction pure

public void factorial(int a){

int i;

f=1;

for(i=1;i<=a;i++)

f=f*i;

System.out.println(f);

}

Pure Impure

Exercice : Appliquer la notion

function magic() {

return Math.random();

}

Pure Impure
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Fonction pure

Exercice : Appliquer la notion

Solution
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Fonction pure

public void factorial(int a){

int i;

f=1;

for(i=1;i<=a;i++)

f=f*i;

System.out.println(f);

}

Pure Impure

Exercice : Appliquer la notion

function magic() {

return Math.random();

}

Pure Impure
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Concepts 
de la PF

Récursivité

Fonction de 
première classe

Données 
immutables

Fonction d'ordre 
supérieur

Fonction 
pure
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Récursivité

Un programme est appelé récursif lorsque une entité

de ce programme (p. ex une fonction) s’appelle elle-

même.

Rappel

La programmation récursive permet d’implémenter

des fonctions définies à partir de relations de récurrence

(P. ex. la factorielle et les suites).

U0= 0

U1= 1

Un= Un−1+ Un−2Si n ≥ 2

Suite de 
Fibonacci 
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Récursivité
Fondamental

La récursivité permet de résoudre un problème complexe en le ramenant à une succession de problèmes plus

simples. Pour ce faire, il nous faut définir 2 choses :

➢ (1) une condition d’arrêt;

➢ (2) le comportement récursif.

function fact(n) {

if (n === 1)

return 1;

else

return n * fact(n-1);

}

La condition d’arrêt

Le comportement récursif



fact(5) = 5 * (fact(4))

fact(5) = 5 * (4 * fact(3))

fact(5) = 5 * (4 * (3 * fact(2)))

fact(5) = 5 * (4 * (3 * (2 * fact(1))))
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Récursivité Cas de base

fact(5)

5! = 5 * 4!

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1!

1! = 1Cas de base

2*1 = 2

1

4*6 = 24

5*24 = 120

fact(5) = 5 * (4 * (3 * (2 * (1))))

fact(5) = 5 * (4 * (3 * (2)))

fact(5) = 5 * (4 * (6))

fact(5) = 5 * (24)

fact(5) = 120

3*2 = 6

Le calcul de la fonction factoriel débute lorsque la 

fonction rencontre son cas de base.
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Récursivité

Boucle (itératif)

InstructionsCondition

Récursif

Impératif vs itératif vs récursif vs fonctionnel
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Récursivité

Impératif vs itératif vs récursif vs fonctionnel

Students often mistakenly associate iterative with 

imperative and recursive with functional.
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Récursivité

Un programme 

impératif

Un programme 

purement fonctionnel

Itératif 

(boucle)
Récursif

Peut être

La plupart des langages de programmation

purement fonctionnels ne comportent pas de

boucles, car toutes les données sont immuables

(la valeur de la condition d'une boucle ne

changera jamais)

Impératif vs itératif vs récursif vs fonctionnel
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Concepts 
de la PF

Fonction de 
première classe

Données 
immutables

Fonction d'ordre 
supérieur

Fonction 
pure

Évaluation 
paresseuse

Récursivité



Evaluation stricte (immédiate) : est une technique d’implémentation des langages de programmation qui

consiste à exécuter les instructions d’un programme dans un ordre séquentiel jusqu’au point de sortie.

Rappel
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Évaluation paresseuse

function fact(n) {

if (n === 0 || n === 1)

return 1;

for (var i = n - 1; i >= 1; i--) {

n *= i;

}

return n;

}

Style impératif (itératif) : une séquence structurée

d’instructions modifiant l’état du programme.

Evaluation stricte : les instructions sont exécutées dans

un ordre séquentiel jusqu’au point de sortie.



L’évaluation paresseuse (évaluation retardée/lazy evaluation) : est une technique d’implémentation des

langages de programmation qui permet de n’exécuter une partie d’un code que lorsque le résultat de cette partie est

devenue réellement nécessaire.

Fondamental
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Évaluation paresseuse

Style fonctionnel : ensemble de fonctions que l’on peut imbriquer les unes dans les autres.

Evaluation paresseuse : reporter ce que tu n’as pas besoin de faire maintenant à plus tard ou à jamais.
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Évaluation paresseuse

function recommandation(day,temperature){

if (day == "Friday" && temperature > 20)

console.log("Aller se promener");

}

recommandation("Monday",26);

Vu que le jour est différent de « Friday » le résultat du deuxième test 

(temperature > 20) importe peu (cette partie ne sera jamais exécutée). 

L'expression de droite n’est

évaluée que si elle est nécessaire



fact(5) = 5 * (4 * (3 * (2 * (1))))

fact(5) = 5 * (4 * (3 * (2)))

fact(5) = 5 * (4 * (6))

fact(5) = 5 * (24)
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Évaluation paresseuse

Fondamental

L’évaluation paresseuse permet d’optimiser l’exécution en suivant une approche originale impossible à

envisager avec l’évaluation strict. (p. ex. la définition des structures infinies : en adoptant une évaluation strict, le

programme tenterait d’évaluer indéfiniment les termes de la suite et ne terminerait jamais).

Lazy evaluation : la procrastination peut être une bonne idée

Seuls les termes 

nécessaires sont 

calculé.

fact(5) = 5 * (fact(4))

fact(5) = 5 * (4 * fact(3))

fact(5) = 5 * (4 * (3 * fact(2)))

fact(5) = 5 * (4 * (3 * (2 * fact(1))))

Cas de base

fact(5) = 120
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Concepts 
de la PF

Récursivité

Fonction de 
première classe

Données 
immutables

Fonction d'ordre 
supérieur

Fonction 
pure

Évaluation 
paresseuse
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Connexion au système mutable

Même dans un programme fonctionnel la mutabilité peut être utile dans certains cas : la programmation

fonctionnelle est très intéressante, mais à un moment ou à un autre, un programme aura besoin d’afficher des

résultats sur un écran ou de persister un état dans une base de données.

Une fois arrivé à ce stade, le travail du paradigme fonctionnel est terminé : toute la partie mutable se fait

en dehors de l’architecture fonctionnelle, dans des fonctions impures sur un paradigme procédural ou orienté

objets, …
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Avantages et Inconvénients 

Avantages Inconvénients

Généricité, Réutilisation, modularité.

Meilleure testabilité et fiabilité.

Adapter à la programmation concurrente.

Les fonctions pures sont plus faciles à

comprendre et à tester car elles ne changent

aucun état.

Une façon de pensé différente

Déclaratif (pas de contrôle du comportement)

Mois lisible.

L'écriture de fonctions pures est facile, mais

leur combinaison avec le reste de l'application

(impures) est difficile.
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La programmation fonctionnelle va tuer la programmation

orientée objet ?

Non, car la PF n’est pas meilleure que la POO, c’est juste une manière différente de programmer,

avec ses avantages et ses inconvénients.

Le choix entre POO et fonctionnelle se fait selon le contexte du projet (Analogie Théorème

de CAP dans les BD).

Question fréquente
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Théorème de CAP (Brewer) : il est impossible dans une base de données de respecter en même temps les trois

contraintes suivantes : la cohérence (Consistency), la disponibilité (Availability) et la distribution (Partition ).

Rappel
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Exercice : Appliquer la notion
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Exercice : Appliquer la notion

Soit le programme javascript suivant : 

function sum(x,y){ 

return  x + y; 

};

const oddNumbers = [1,3,5,7,9];

var s = 5;

function f(x,init){ 

return x.reduce(sum,init)

};

console.log(f(oddNumbers,s));

 f est une fonction de première classe, car elle ne

prend pas une fonction comme paramètre.

 f est une fonction impure, car elle n’engendre pas

un effet de bord et elle respecte le principe de la

transparence référentielle.

 f est une fonction d’ordre supérieur, car elle est

considérée comme n'importe quel autre type de

variable.

 le résultat d’affichage de ce programme est : 25.

 le résultat d’affichage de ce programme est : [30].

 Aucune réponse n'est juste.
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