Ministére de ’Enseignement Supérieur et de la Recherche Scientifique
Université de Jijel
Faculté des Sciences exactes et de I'informatique
Département d’informatique

Master 1: EPD
Enseignant du module : Dr. Hemza FICEL

Contact: hemza.ficel@univ-jijel.dz

Paradigmes de

programmation

Impératif

Déclaratif

Procedural g

Orienté objet

Fonctionnel =

— K

Pascal

Java

Smalltalk

Lisp

Haskell

N G

+ Le paradigme déclaratif exprime la logique d'un calcul sans décrire son YOUR
RESTAURANT
flux de controle. ~ NAME

%« YOURNUMBER
& YOUR WEBSITE

SANDWISHS

- andwich Chicken 350 DA
A Sandwich Viande 450 DA
-- Requéte sql =
q q Sandwich Thon 450 DA
| sandwich Spuntino 580 DA

SELECT first name, last name, age FROM Customers WHERE age>25 ; et S'Mw“-

Sandwich SPECIAL 250 DA g
Sandwich Curry Solo 500 DA

. “s Pizza Margherite = 480 DA
t" . _.3 " Pizza Chicken 550 DA
; ,,<" Pizza Mexicaine 620DA
R , Pizza Spuntino 680 DA
Pizza Saumon 1050 DA
7 Pizza Neptune 600 DA .
Pizza Cosanostra 550 DA

\

+ Il se concentre sur ce que le programme devrait accomplir (quoi ?).

Chapitre 4

Programmation Fonctionnelle

Programmation Fonctionnelle

“You will learn an entirely new way of thinking. Your
brain is going to rebel a little. Just keep moving
forward ! ”

Programmation Fonctionnelle q

La programmation fonctionnelle : Pourquoi faire compliqué
guand on peut faire simple ?

A RIS

s

Programmation Fonctionnelle

Les nombres paires dans un tableau ...

La programmation procédurale

// Langage de programmation C
int isEven(int v) {
return v%?2 == 0;
h
int main(){
int array [5] = {1,2,3,4,5};
int evens[] = {};
int pos = 0;
for (int1=0;1<5;1++) {
if (isEven(array[i])==1){
evens[pos] = array|[i];
pos = pos+1;
b
b

return O;

;

La programmation fonctionnelle

// Langage de programmation Javascript
let isEven = function(v) {

return v % 2 == 0;
§
let array = [1,2,3,4,5];

let evens = array.filter(isEven);

Programmation Fonctionnelle

La source d’inspiration de la programmation fonctionnelle
sont les mathématiques.

2% YA o= LI (Ries-e™ 4 2 - Yax®
S e Sb'zquf)@mﬂ(i) e
R_—dfi dt %mxy.vxcas,x 3E(m?i)0& doc dz
5 x3 ‘fs-»o drjoixjé—‘g T=hor
fimp ° W ST Vs N
* ;_ I/) 24X (3R H) b jjjj’(l_ g2 ——£Ja5f;"
EAR f:.S X 1(ad-1)olx p QM 8-2JTRH. (D) J J’:m\
(rom-g)= 2)

. S _f4o(1 % foft tcgg);‘_;c —3;,.;,!,;
; Se ig ‘;cj“ (@J—) (f’%»'zj—msx.
=cr ’tg,éx Cfg.x

:i: &ty oo J‘.',DBS.X. A eOs Ao

Simplicite
= math ?

M)éf ()(émx'&)

b &) = Mass
‘{”]u as (J-')z smx CHinrae

L= VE (G)%

MR o A Wi “J’EI/\/\/\/\
S tum ST tiom S s V= 10(- -1~)_

D REALLYR

Programmation Fonctionnelle q

Principe de base

= — f(x) — N

<+ Une fonction prend des valeurs en entrée (parametres), effectue des calcules (traitements) et génére un

résultat (valeur de retour).

Programmation Fonctionnelle

Principe de base

Fonction au sens Fonction au sens
mathématique informatique
f(x) = x* int swap(int™ a, int* b) {
f(1)=1 int tmp = *a;
f(2)=4 g = *b:
f(3)=6 *b = temp;
f(4)=16 printf("%d, %d",a,b);
f(5) =25 return 1;
......... !

La difféerence ????

Programmation Fonctionnelle

Principe de base

°)
°~

La différence ??

5 nL Le principe mathéematique de la fonction : les fonctions ne vont pas modifier des variables, écrire sur un

ecran Interroger une base de données, etc.

’-L Dans la programmation fonctionnelle, c’est la méme chose ! Les fonctions n’effectuent que @

traltements gui retournent un résultat.

Programmation Fonctionnelle

Principe de base

Concretement

Pas de fichiers !
Pas d’événements !!
Pas de bases de données !!

Pas de Il

Programmation Fonctionnelle

Principe de base

Quel est I'intérét d’'un programme qui ne fait
rien que retourner des valeurs ?

Programmation Fonctionnelle

Principe de base

Des situations ou la paradigme fonctionnel est plus adapté qu'un autre paradigme de
programmation ...

Temps
pfzez:u o= 21l (gi.)é{ {;,: smxié,mx) ﬂg%g abe ir_m? Tem S
R%’ ?lfﬂlssjgy&wqx_‘ (f;(mgvx)o&f;[f&)dg P
: - to ! ax
é‘f,’:‘ 0 T, J_.J 3 dTJﬂlﬁcS#-a =4
o (o (3“) b 111520 .y
RIS 1K P (O PTR o &) 8-27RH (D) Jﬂj o oy ol
Wo(58)=5 Res 4 Jf(::,) S Trms 2"
g %“") S\ e
ca S‘- uSl: 2 otT<o Res[flz 20) Hx A A
F 3 ° Q% 8- _[40('1 JmT T(@fc?:zj P TaChe TaChe
; C_ wu
(ol 2 =i “éf""?x oy 1 2
/ u (J*L)Q_m T—%‘W(‘f@m}
S fad 7 :
f;\fﬁ,]—m_?d i ’)mj/-’df w f{ M/\/\
&= bim > mgmwlf 10(-1%)
Le calcul des formules La gestion des threads Le calcul distribué

complexes (synchronisation)

Programmation Fonctionnelle

Principe de base

Exemple : traiter en paralléle une quantité importante de données dans un contexte « Big data » ...

Programmation Fonctionnelle

Concepts de la programmation fonctionnelle

Concepts
de la PF

Données
immutables

Programmation Fonctionnelle

Concepts
de la PF

Programmation Fonctionnelle

Fonction de premieére classe

LLa classe CC

(Attributs : \

Att_1: String
Att_2:int
Att_3 : double

Att_4 : float
Méthodes : 4+ Meéthode de classe : elle est indépendante des

= objets, mais elle reste néanmoins liée a la classe.

Le concept de
méthode en POO <+ Meéthode d'instance : elle est liée a un objet (elle

N agit sur un objet).

Le paradigme fonctionnel nous offre la possibilité de se
libérer de ce lien (on parle de fonction et non de méthode).

Programmation Fonctionnelle

Fonction de premieére classe

La fonction en programmation fonctionnelle
est une valeur a part entiere ...

Fonction de premieére classe

La fonction en PF est une valeur a part entiere

: 4+ Dans le paradigme fonctionnel, les fonctions sont des valeurs de premiére classe : elles sont considérées§

comme n'importe quel autre type de variable .

Liste de types : | boolean, string, float, int, ... , function

Programmation Fonctionnelle

Fonction de premieére classe

La fonction en PF est une valeur a part entiere

FLEYT]
.

: 4+ Dans le paradigme fonctionnel, les fonctions sont des valeurs de premiére classe : elles sont considérées§

comme n'importe quel autre type de variable .

: 4 Une fonction peut étre affectée en tant que valeur a une variable, transmise en tant que parametre a d'autres

: fonctions ou retournée comme résultat par une autre fonction.

Programmation Fonctionnelle

Fonction de premieére classe

Exemple : JavaScript traite les fonctions comme des types de premiere
classe.

Une fonction peut étre affectée en tant que valeur

function f(x){ var tripleVar = function (x){
return x*3; %tum X*3;

} Variable }

console.log(f(2)); console.log(tripleVar(2));

n Une fonction

anonyme

Programmation Fonctionnelle

Fonction de premieére classe

Exemple : JavaScript traite les fonctions comme des types de premiere
classe.

listOfElement = [1,2,3];

function printElemexnt(element){
console.log(element);

} Une fonction est transmise en

function actionToList(list, myFunction){ tant que parametre.
list.forEach(myFunction);
j

actionToList(listOfElement,printElement);

1

2
3

Programmation Fonctionnelle

Fonction de premieére classe

Exemple : JavaScript traite les fonctions comme des types de premiere
classe.

function random() {

return Math.rando‘nN
h

function magic() {

\ Une fonction est retournée

return randomy(); «—

j

console.log(magic());

comme résultat d’une autre
fonction

0.44874968444293595

Programmation Fonctionnelle

Fonction de premieére classe

Quel est I'intérét par rapport a une
méthode ?

Programmation Fonctionnelle

Fonction de premieére classe

Une nouvelle étendue de
possibilités : des fonctions d’ordre
supeérieur ...

Programmation Fonctionnelle

Concepts
de la PF

Programmation Fonctionnelle

Fonction d'ordre supérieur

Imaginez le scénario suivant ...

Liste d’entiers

1 2 3 4 5 6

//code impératif

var tab =[1,2,3.4,5,6];

var tripleResult = [];

for(vari=0;1 < tab.length; i++) {
tripleResult [i] = tab[i] * 3 ;

multiplier tous les éléments
par un entier (p. ex 3)

;

3 6 9 12 | 15 | 18

Programmation Fonctionnelle

Fonction d'ordre supérieur

Imaginez le scénario suivant ...

Pourquoi faire compliqgué quand on peut faire simple ?

A RIS

s

Programmation Fonctionnelle

Fonction d'ordre supérieur

Imaginez le scénario suivant ...

Pourquoi ne pas simplement appliquer la fonction triple a ma

liste ?
Quelque chose comme ¢a ...
var tab=1[1,2,3,4,5,6];
function trip]e(e]em) { function applyToList(list,myFunction) {
return elem™3; list.forEach(myFunction);
h h
console.log(triple(2)); applyToList(tab, triple);

Programmation Fonctionnelle

Fonction d'ordre supérieur

Imaginez le scénario suivant ...

lls ont pensé a nous !!!!

Programmation Fonctionnelle

Fonction d'ordre supérieur

Liste d’entiers

1 2 3 4 5 6

//code impératif

var tab =[1,2.3,4.5,6];

var tripleResult = [];

for(vari=0;1 < tab.length; i++) {
tripleResult [i] = tab[i] * 3 ;

multiplier tous les éléments
par un entier (p. ex 3)

;

3 6 9 | 12 | 15 | 18

Donc pour faire ceci en programmation fonctionnelle ...

Programmation Fonctionnelle

Fonction d'ordre supérieur

La fonction d’ordre supérieur map.

map (*3) [1,2,3,4,5,6]

var tab =[1,2,3.4,5,6];
function triple(elem) { «—
ceturn elem®*3- map applique la fonction triple sur tous

h / les élements du tableau « tab ».
|

var tripleResult = tab.map(triple)
console.log(tripleResult); a ttention

[36.9 12.15.18] “‘ Le langage de programmation utilisé est :
4 ’ » ’) .

Programmation Fonctionnelle

Fonction d'ordre supérieur

Des fonctions qui regoivent ou produisent d’autres fonctions

4+ Dans le paradigme fonctionnel, les fonctions peuvent :
» (1) prendre des fonctions comme arguments.

» (2) retourner des fonctions comme résultats.

Programmation Fonctionnelle

Fonction d'ordre supérieur

La fonction d’ordre supérieur reduce.

Liste d’entiers

1 2 3 4 5 6

//code impératif
var tab =[1,2,3.4,5,6];
Calculer la somme de tous les result = 0;
élément (réduire la liste a une for(vari=0;1 < tab.length;it++) {
seule valeur.) result = result + tab[i];
;

21

Programmation Fonctionnelle

Fonction d'ordre supérieur

La fonction d’ordre supérieur reduce.
reduce (+,0) [1,2,3,4,5,6]

var tab=1[1,2,3,4,5,6];

function sum(result,elem){+ reduce applique la fonction sum sur tous les
return result+elem; éléments du tableau « tab » afin de le réduire & une

} seule valeur.

var sumOfArray = tab.reduce(sum,0
console.log(sumOfArray);

La valeur initiale de

I’accumulateur result

Programmation Fonctionnelle

Fonction d'ordre supérieur

La fonction d’ordre supérieur filter.

Liste d’entiers

1 2 3 4 5 6 //code impératif
pos = 0;
var filtredResult = [];
for(var1=0;1 <tab.length; i++) {
if (tab[i]>3){
filtredResult[pos] = tab[i] ;
pos = pos + 1;

Retourner tous les éléments
qui remplissent/une condition
(p.ex. elem>3)

3 | 4|5 |6 J
§

Programmation Fonctionnelle

Fonction d'ordre supérieur

La fonction d’ordre supérieur filter.

filter (>3) [1,2,3,4,5,6]

var tab =[1,2,3,4,5,6];

function cond(elem){ . . .
. ‘\ filter applique la fonction cond sur tous les
return elem=3; ————__ €léments du tableau « tab » pour retourner
h — tous les eéléments qui remplissent la
var filtredResult = tab.filter(cond) condition déterminée par cette fonction

console.log(filtredResult);

Programmation Fonctionnelle

Exercice : Appliquer la notion

Programmation Fonctionnelle

Fonction d'ordre supérieur

Exercice : Appliguer la notion

const users = |
{ name: 'Ali', age: 25 },
{ name: 'Salim', age: 30 },
{ name: 'Yassine', age: 35 },

I;

const numbers = [1, 2, 3, 4, 51;

const doubled = numbers.map(num => num * 2);

function getName(user) {

return user.name: console.log(doubled);

b

const names = users.map(getName); A f /
rrow functions

COHSOle.log(names); lambda expressions

['Ali', 'Salim’, 'Yassine']

[ZI 4l 6) 8’ 10]

Programmation Fonctionnelle

Fonction d'ordre supérieur

Exercice : Appliguer la notion

const numbers = [1, -2, 3, -4, 5, -6]; const users = [
{ name: 'Alil', age: 25 },
function isNegative(num) { { name: 'Salim', age: 30 },
return num < 0; { name: 'Yassine', age: 35 },
§ I;
const negativeNbrs = numbers.filter(isNegative); const olderUsers = users.filter(user => user.age > 30);
console.log(negativeNbrs); console.log(olderUsers);

I (rame: asine, g3

Programmation Fonctionnelle

Concepts
de la PF

Données
immutables

Programmation Fonctionnelle

Données immutables

<+ Une variable immutable (immuable) (cannot change) est une variable qui ne peut pas étre modifiée une fois la

: variable initialisée.

-L Immutability is a distinct notion than that of a constant : “Constants are immutable in the sense that they

cannot change. However, immutability refers to values, not to the assignment of values”.

String s = "x"; StringBuilder s = new StringBuilder "x";
S:S_|_Hy|| ; S append(" ") X

s est immutable S est mutable

Programmation Fonctionnelle

Données immutables

Le type « String » en Java est immutable !

+ Les variables de type « String » en Java sont immutables, c'est-a-dire que vous ne pouvez pas les
modifier. Ainsi, la modification d’une chaine de caractere de ce type (p. ex en utilisant I'opérateur de concaténation
ou une méthode comme toUpperCase) génere une nouvelle chaine de caractere, au lieu de modifier le contenu de la

chaine existante.

String s = "x"; /1 > ¢
s=st+'"y" ; //2

String t=s; //3

=t+"z" ; //4

Programmation Fonctionnelle

Données immutables

Le type « StringBuilder » en Java est mutable !

4+ Les variables de type « StringBuilder » en Java sont mutables, c'est-a-dire que vous pouvez les modifier sans

aucun probleme. Ainsi, la modification d’une chaine de caractere de ce type modifie le contenu de la chaine

existante.

StringBuilder s = new StringBuilder "x"; //1

s.append("y") ;
StringBuilder sb=s ; /2

sb.append("z") ;

Programmation Fonctionnelle

Données immutables

Les types mutables semblent beaucoup plus puissants
que les types immutables ...

Programmation Fonctionnelle

Données immutables

Imaginez le scénario suivant ...

String s ="""; StringBuilder sb = new StringBuilder();
for (inti= 0, i<n;++) { for (inti=0;1<n; ++1) {

s=s+n; sb.append(String.valueOf(i));
J J

: ;4 Gros défaut des données immutables : pour la modification des données immutables vous étes obligé de créer :

d autres copies de ces données = Probléme de performance (I'utilisation élevée de la memoire).

Programmation Fonctionnelle

Données immutables

Les types mutables semblent beaucoup plus puissants
que les types immutables, mais les types immuables
sont plus slirs et plus faciles a comprendre.

Programmation Fonctionnelle

Données immutables

uL Pour des raisons d’optimisation en Java (gain d'espace et reduction de l'utilisation de la mémoire), les
5 références vers des chaines littérales identiques pointent vers un méme String. P. ex. ici, "IA" et "IA" sont deux

chalnes littérales identiques, s1 et s2 pointent donc vers un méme String.

String s1 ="[A";
Sting e~ A" Te
String s3 = "[A"; frue

System.out.printin(s1==s3);

Programmation Fonctionnelle

Données immutables

La classe String maintient un pool pour les chaines de caracteres littérales.

:4 Pour la création d’une chaine de:
: caracteres littérale, le systéme recherche une :

: chaine ayant la méme valeur dans le pool.

> s'il la trouve, il renvoie simplement la :
reference _
> sinon il crée une nouvelle chaine dans

le pool et renvoie sa reférence.

String s1 = "[A";

Java Heap

String s4 = new String("Java:&

1A

String s2 = "Java"; 74' Java
String s3 = "[A";

T~ Java

Programmation Fonctionnelle

Données immutables

Imaginez le scénario suivant : la gestion des mots de passe ...

Java Heap
String passUserl = "Pass1234"; _
String passUser2 = "Pass1234"; _ /:; Pass1234 Abc5000

String passUser3 = "Pass1234"; —

passUser]l = "Abc5000";

Si ’utilisateur « User 1 » veut changer son

mot de passe, que se passe-t-il si « String »

était un type mutable ?

Programmation Fonctionnelle

Données immutables

Imaginez le scénario suivant : la gestion des mots de passe ...

Java Heap

String passUser]l = "Pass1234"; _

String passUser2 = "Pass1234"; _ Pass1234
String passUser3 = "Pass1234"; _— /v Abc5000

v

passUser]l = "Abc5000";

Heureusement « String » est immutable !

Programmation Fonctionnelle

Données immutables

Immutable types are safer, and easier to understand

4+ Les variables de type « String » sont largement utilisées comme parametres pour de nombreuses classes Java
(par ex. le port et ’adresse de I'hOte pour ouvrir une connexion réseau, le chemin des fichiers a lire, ’identifiant et

le mot de passe pour établir la connexion avec une base de données,)

a Attention

-L Simplifier la gestion d’un état partageé (des variables thread-safe) : un type « String » mutable pourrait bien

: causer de sérieuses menaces de sécurité a nos applications.

Programmation Fonctionnelle

Concepts
de la PF

Données
immutables

Programmation Fonctionnelle

Fonction pure

Vers la transparence référentielle : adieu les effets de bord !

+ Les fonctions pures sont inspirées des fonctions mathématiques. Ainsi, elles possedent deux propriétés:

» (1) Aucune mutation : elle retourne la méme valeur pour les mémes arguments (transparence :

référentielle).

> (2) Aucune influence extérieure : elles n’engendre pas d’effet de bord (Side-effect free).

-L L’effet de bord « side effect » : on parle d’un effet de bord lorsque I’exécution d’un sous-programme cause la

modlflcatlon d’un état (variable) en dehors de son environnement local.

Programmation Fonctionnelle

Fonction pure

Always produce the same
output for same arguments They have no side-effects
irrespective of anything else.

Programmation Fonctionnelle

Fonction pure

int triple(int elem){ int getSolde(String compte) {
return elem™3; //requéte SQL
Résultats prédictibles : ils seront toujours les Résultats imprédictibles : ils viennent d’une base
mémes quoi qu’il arrive. de données qui peut changer d’états.

4 12 200C1 0

6 18 250C6 1500
7 21 150C5 1200
4 12 200C1 2000

Programmation Fonctionnelle

Fonction pure

4+ Pure function are predictable, clean, transparent and safe :

> Easier to read.

» Easier to refactor.

»> Easier to debug.

» Easier to test.

» Do not depend on anything else, so you don't have to care about time or the order of execution.

» Eencourage safe ways of programming (Thread-safe).

Programmation Fonctionnelle

Fonction pure

“Keep It Simple and Stupid”
IS an Important design principle in computer science.

Pure functions are simple and stupid in the best
possible way.

Wherever possible, you should use pure
functions in your applications !

Programmation Fonctionnelle @

Exercice : Appliquer la notion

Programmation Fonctionnelle

Fonction pure

Exercice : Appliguer la notion

public int factorial(int a) {

int 1.f; var 1nit = 0;

=1; function add(a,b){
for(1=1;1<=a;1++) nit =1;

f=1*1; return a + b + it
return f; }

f

Programmation Fonctionnelle

Fonction pure

Exercice : Appliquer la notion

Solution

Programmation Fonctionnelle

Fonction pure

Exercice : Appliguer la notion

public int factorial(int a) {

Int 1; var 1nit = 0;

=1; function add(a,b){
for(1=1;1<=a;1++) nit =1;

f=1*1; return a + b + it
return f; }

f

viEs & & omy

Programmation Fonctionnelle

Fonction pure

Exercice : Appliguer la notion

public void factorial(int a) {
Int 1;

f=1; function magic() {

for(i=1;i1<=a;it++) return Math.random();
f=f*i; J
System.out.println(f);
j

Programmation Fonctionnelle

Fonction pure

Exercice : Appliquer la notion

Solution

Programmation Fonctionnelle

Fonction pure

Exercice : Appliguer la notion

public void factorial(int a) {
Int 1;

f=1; function magic() {

for(i=1;i1<=a;it++) return Math.random();
f=f*i; J
System.out.println(f);

}m Iy & Emy

Programmation Fonctionnelle

Concepts
de la PF

Données
immutables

Programmation Fonctionnelle

Récursivité
Rappel l l
o R - e
: 4+ Un programme est appelé récursif lorsque une entité : RECURSION
_ RECURSION
: de ce programme (p. ex une fonction) s’appelle elle- : RECURSION
: méme. RECURSION
RECURSION
It recurs.
: 4 La programmation récursive permet d’implémenteré g U= 0
: : 0=
: des fonctions définies & partir de relations de récurrence : Suite de < U= 1
: . 5 Fibonacci | U.= Uwi+ UrSin=2
: (P. ex. la factorielle et les suites). \

Programmation Fonctionnelle

Récursivité

i La récursivité permet de résoudre un probléme complexe en le ramenant a une succession de problémes plus

: simples. Pour ce faire, il nous faut définir 2 choses :

» (1) une condition d’arrét;

» (2) le comportement recursif.

function fact(n) {
La condition d’arrét » 1f (Il —== 1)
return 1;
else
— return n * fact(n-1);

Le comportement récursif

;

Programmation Fonctionnelle

Récursivité Cas de base

fact(5) =5 * (fact(4))
| fact(5) |- | fact(5) =5 * (4 * fact(3))
| 5+24 =120 fact(5)=5* (4 * (3 * fact(2)))

151=5%41 |
4*%6 =24

ri' —4 %3 L_| Le calcul de la fonction factoriel débute lorsque la
X - ' fonction rencontre son cas de base.

fact(S)=5* (4 * (3 * (2 * fact(1))))

3¥2=6
3'=3*2!
e [
1 —9 % 19 ac =
21=2 ! L_I—|1 fact(S) =45 * (4 % (6))

Cas de base 1'=1 fact(5) =5 * (24)
fact(5) =120

Programmation Fonctionnelle

Récursivité

Impeératif vs itératif vs récursif vs fonctionnel

Wtk
WCURSION
RECURSION

RECURSION
RECURSION
~RECURSION
RECURSION
RECURSION

RECURSION
RECURSION

RECURSION

It recurs.

RECURSION

It recurs.

Condition Instructions ‘

Boucle (itératif) Récursif

Programmation Fonctionnelle

Récursivité

Impeératif vs itératif vs récursif vs fonctionnel

Students often mistakenly associate iterative with
Imperative and recursive with functional.

Programmation Fonctionnelle

Récursivité

Impératif vs itératif vs récursif vs fonctionnel

Un programme Un programme
Imperatif purement fonctionnel
Peut étre l

La plupart des langages de programmation
purement fonctionnels ne comportent pas de
Itératif . : boucles, car toutes les données sont immuables
Recursif . ,
(boucle) (la valeur de la condition d'une boucle ne
changera jamais)

Programmation Fonctionnelle

Concepts
de la PF

Données
immutables

Programmation Fonctionnelle

Evaluation paresseuse

-L Evaluation stricte (immeédiate) : est une technique d’implémentation des langages de programmation qui§

consiste a exécuter les instructions d’un programme dans un ordre séquentiel jusqu’au point de sortie.

function fact(n) {
if(n==0|n==1)

nL Style impeératif (itératif) : une séguence structuréeé

return 1; P , .
for(vari=n-1;i>=1;i-) { d’instructions modifiant 1’état du programme.

n*=g S N .
y = 4- Evaluation stricte : les instructions sont exécutées dans :

return n; un ordre sequentiel jusqu’au point de sortie.

} .. ;

Programmation Fonctionnelle

Evaluation paresseuse

-L L’évaluation paresseuse (évaluation retardée/lazy evaluation) : est une technique d’implémentation des§
: Iangages de programmation qui permet de n’exécuter une partie d’un code que lorsque le résultat de cette partie est

devenue réellement nécessaire.

-L Style fonctionnel : ensemble de fonctions que 1’on peut imbriquer les unes dans les autres.

-L Evaluation paresseuse : reporter ce que tu n’as pas besoin de faire maintenant a plus tard ou a jamais.

Programmation Fonctionnelle

Evaluation paresseuse

function recommandation(day,temperature) {
if (day == "Friday" && temperature > 20)

console.log("Aller se promener"); \
j . L'expression de droite n’est

: " " .
recommandation("Monday",26); évaluée que si elle est nécessaire

|

Vu que le jour est différent de « Friday » le résultat du deuxieme test
(temperature > 20) importe peu (cette partie ne sera jamais exécutée).

Programmation Fonctionnelle

Evaluation paresseuse

Lazy evaluation : la procrastination peut étre une bonne idée

-L L’¢évaluation paresseuse permet d’optimiser 1’exécution en suivant une approche originale impossible a
envisager avec 1’évaluation strict. (p. ex. la définition des structures infinies : en adoptant une évaluation strict, le

: programme tenterait d’évaluer indéfiniment les termes de la suite et ne terminerait jamais).

fact(5) =120

fact(5) =5 * (fact(4)) Cas de base fact(5)=5*4* 3 * (2 * (1))))

fact(5) =5 * (4 * fact(3)) fact(5)=5* 4 * (3 * (2))

fact(5) =5 * (4 * (3 * fact(2))) fact(5) =5 * (4 * (6 Seuls les termes
fact(5)=5* 4 * (3 * (2 * fact(1)))) fact(5) =135 * (24 calculé.

Programmation Fonctionnelle

Concepts
de la PF

Données
immutables

Programmation Fonctionnelle

Connexion au systeme mutable

nL Méme dans un programme fonctionnel la mutabilité peut étre utile dans certains cas : la programmation
: fonctionnelle est trés intéressante, mais & un moment ou & un autre, un programme aura besoin d’afficher des

 résultats sur un écran ou de persister un état dans une base de données.

+ Une fois arrivé a ce stade, le travail du paradigme fonctionnel est termine : toute la partie mutable se fait

en dehors de ’architecture fonctionnelle, dans des fonctions impures sur un paradigme procédural ou orienté

Programmation Fonctionnelle

Avantages et Inconvénients

Avantages

s = L4

<+ Maelilleure testabilité et fiabilité.

4+ Adapter a la programmation concurrente.

+ Les fonctions pures sont plus faciles a
comprendre et a tester car elles ne changent

aucun état.

"

"

Inconvénients

Une facon de pense différente

Déclaratif (pas de contréle du comportement)

Mois lisible.

L'écriture de fonctions pures est facile, mais

leur combinaison avec le reste de I'application

(impures) est difficile.

Programmation Fonctionnelle

Question fréquente

La programmation fonctionnelle va tuer l|la programmation

orientee objet ?

+ Non, car la PF n’est pas meilleure que la POO, c’est juste une maniere difféerente de programmer,

avec ses avantages et ses inconvénients.

4+ Le choix entre POO et fonctionnelle se fait selon le contexte du projet (Analogie Théoréme
de CAP dans les BD).

Programmation Fonctionnelle

4- Théoreme de CAP (Brewer) : il est impossible dans une base de données de respecter en méme temps les trois

contralntes suivantes : la cohérence (Consistency), la disponibilité (Availability) et la distribution (Partition).

Availability
(Disponibilité)
Modele
Relationnel) ,
Orienté Clé-Valeur Oracle Elasticsearch SimpleDB*
Orienté Colonne MySQL Spark Memcached*
Orienté Document SQLServer Neo4 Redis
Orienté Graphe PostgreSQL OrientDB DynamoDB*
DB2 FlockDB CouchBase*
Cassandra*

* Possibilité de changer
le mode de cohérence
Cohérence <-> Disponibilité

Partition tolerance
(Distribution)

Consistency
(Cohérence) HBase MongoDB*

Programmation Fonctionnelle

Exercice : Appliquer la notion

Programmation Fonctionnelle

Exercice : Appliquer la notion

[1 f est une fonction de premiere classe, car elle ne
Soit le programme javascript suivant : prend pas une fonction comme paramétre.

function sum(x,y){ [0 f est une fonction impure, car elle n’engendre pas
un effet de bord et elle respecte le principe de la

return X +vy; T
y: transparence reférentielle.
const oddNumbers = [1,3,5,7,9]; [f est une fonction d’ordre supérieur, car elle est
vars = 5 considerée comme n'importe quel autre type de
o variable.
function f(x,init){
return X.reduce(sum,init) [1 le résultat d’affichage de ce programme est : 25.
¥ [J le résultat d’affichage de ce programme est : [30].

console.log(f(oddNumbers,s));
[J Aucune réponse n'est juste.

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40
	Diapositive 41
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46
	Diapositive 47
	Diapositive 48
	Diapositive 49
	Diapositive 50
	Diapositive 51
	Diapositive 52
	Diapositive 53
	Diapositive 54
	Diapositive 55
	Diapositive 56
	Diapositive 57
	Diapositive 58
	Diapositive 59
	Diapositive 60
	Diapositive 61
	Diapositive 62
	Diapositive 63
	Diapositive 64
	Diapositive 65
	Diapositive 66
	Diapositive 67
	Diapositive 68
	Diapositive 69
	Diapositive 70
	Diapositive 71
	Diapositive 72
	Diapositive 73
	Diapositive 74
	Diapositive 75
	Diapositive 76
	Diapositive 77
	Diapositive 78
	Diapositive 79
	Diapositive 80
	Diapositive 81
	Diapositive 82
	Diapositive 83
	Diapositive 84
	Diapositive 85

