
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université de Jijel

Faculté des Sciences exactes et de l’informatique

Département d’informatique

– Module –

Environnements et Programmation Dédiés

Master 1 : EPD

Enseignant du module : Dr. Hemza FICEL

Contact: hemza.ficel@univ-jijel.dz

2

Pa
ra

d
ig

m
es

 d
e

p
ro

gr
am

m
at

io
n

 Impératif

Procédural
Pascal

C

Orienté objet
Java

Smalltalk

Déclaratif

Fonctionnel
Lisp

Haskell

Descriptif SQL

Logique Prolog

3

Le paradigme déclaratif exprime la logique d'un calcul sans décrire son

flux de contrôle.

-- Requête sql

SELECT first_name, last_name, age FROM Customers WHERE age>25 ;

Il se concentre sur ce que le programme devrait accomplir (quoi ?).

Chapitre 4
Programmation Fonctionnelle

Programmation Fonctionnelle 5

“ You will learn an entirely new way of thinking. Your

brain is going to rebel a little. Just keep moving

forward ! ”

Programmation Fonctionnelle 6

La programmation fonctionnelle : Pourquoi faire compliqué
quand on peut faire simple ?

Programmation Fonctionnelle 7

// Langage de programmation C

int isEven(int v) {

return v%2 == 0;

}

int main(){

int array [5] = {1,2,3,4,5};

int evens[] = {};

int pos = 0;

for (int i = 0; i < 5; i++) {

if (isEven(array[i])==1){

evens[pos] = array[i];

pos = pos+1;

}

}

return 0;

}

La programmation procédurale

// Langage de programmation Javascript

let isEven = function(v) {

return v % 2 == 0;

}

let array = [1,2,3,4,5];

let evens = array.filter(isEven);

La programmation fonctionnelle

Les nombres paires dans un tableau …

Programmation Fonctionnelle 8

La source d’inspiration de la programmation fonctionnelle
sont les mathématiques.

Simplicité
= math ?

Programmation Fonctionnelle 9

Données Résultats

Une fonction prend des valeurs en entrée (paramètres), effectue des calcules (traitements) et génère un

résultat (valeur de retour).

Principe de base

Fondamental

Le principe central de la programmation fonctionnelle : tout est fonction !

Programmation Fonctionnelle 10

Fonction au sens
mathématique

Principe de base

int swap(int* a, int* b){

int tmp = *a;

*a = *b;

*b = temp;

printf("%d, %d",a,b);

return 1;

}

f(x) = x²

f(1) = 1

f(2) = 4

f(3) = 6

f(4) = 16

f(5) = 25

………

Fonction au sens
informatique

La différence ????

Le principe mathématique de la fonction : les fonctions ne vont pas modifier des variables, écrire sur un

écran, interroger une base de données, etc.

Programmation Fonctionnelle 11

Principe de base

La différence ????

Fondamental

Dans la programmation fonctionnelle, c’est la même chose ! Les fonctions n’effectuent que des

traitements qui retournent un résultat.

Programmation Fonctionnelle 12

Principe de base

Pas de fichiers !!

Pas d’événements !!

Pas de bases de données !!

Pas de …. !!

Concrètement

Programmation Fonctionnelle 13

Principe de base

Quel est l’intérêt d’un programme qui ne fait
rien que retourner des valeurs ?

Programmation Fonctionnelle 14

Principe de base

Le calcul distribué

Tâche
1

Tâche
2

Temps

Temps

Tâ
ch

e
 1

Tâ
ch

e
 2

Le calcul des formules

complexes

La gestion des threads

(synchronisation)

Des situations où la paradigme fonctionnel est plus adapté qu'un autre paradigme de
programmation …

Programmation Fonctionnelle 15

Principe de base

Cours EPD Jijel
IA Jijel EPD

EPD IA Cours

Cours EPD Jijel

IA Jijel EPD

EPD IA Cours

Cours, 1
EPD, 1
Jijel, 1

IA, 1
Jijel, 1
EPD, 1

EPD, 1
IA, 1

Cours, 1

Cours, 1
Cours, 1

EPD, 1
EPD, 1
EPD, 1

Jijel, 1
Jijel, 1

IA, 1
IA, 1

Cours, 2

EPD, 3

Jijel, 2

IA, 2

Cours, 2
EPD,3
Jijel, 2
IA, 2

Input Split Map shuffle/Sort Reduce Output

Exemple : traiter en parallèle une quantité importante de données dans un contexte « Big data » …

Programmation Fonctionnelle 16

Concepts
de la PF

Récursivité

Fonction de
première classe

Données
immutables

Fonction d'ordre
supérieur

Fonction
pure

Évaluation
paresseuse

Concepts de la programmation fonctionnelle

Programmation Fonctionnelle 17

Concepts
de la PF

Fonction de
première classe

Programmation Fonctionnelle 18

Fonction de première classe

Att_1: String

Att_2 : int

Att_3 : double

Att_4 : float

Attributs :

Méthodes :

static int mClasse()

int mInstance_2 ()

void mInstance_1 ()

La classe CC

Le concept de
méthode en POO Méthode d'instance : elle est liée à un objet (elle

agit sur un objet).

Méthode de classe : elle est indépendante des

objets, mais elle reste néanmoins liée à la classe.

Le paradigme fonctionnel nous offre la possibilité de se
libérer de ce lien (on parle de fonction et non de méthode).

Programmation Fonctionnelle 19

Fonction de première classe

La fonction en programmation fonctionnelle
est une valeur à part entière …

Programmation Fonctionnelle 20

Fonction de première classe

La fonction en PF est une valeur à part entière

Fondamental

Dans le paradigme fonctionnel, les fonctions sont des valeurs de première classe : elles sont considérées

comme n'importe quel autre type de variable .

boolean, string, float, int , … , functionListe de types :

Une fonction peut être affectée en tant que valeur à une variable, transmise en tant que paramètre à d'autres

fonctions ou retournée comme résultat par une autre fonction.

Programmation Fonctionnelle 21

Fonction de première classe

La fonction en PF est une valeur à part entière

Fondamental

Dans le paradigme fonctionnel, les fonctions sont des valeurs de première classe : elles sont considérées

comme n'importe quel autre type de variable .

Programmation Fonctionnelle 22

Fonction de première classe

function f(x){

return x*3;

}

console.log(f(2));

var tripleVar = function (x){

return x*3;

}

console.log(tripleVar(2));

Une fonction

anonyme

Variable

Exemple : JavaScript traite les fonctions comme des types de première
classe.

6

Une fonction peut être affectée en tant que valeur

Programmation Fonctionnelle 23

Fonction de première classe

Exemple : JavaScript traite les fonctions comme des types de première
classe.

listOfElement = [1,2,3];

function printElement(element){

console.log(element);

}

function actionToList(list,myFunction){

list.forEach(myFunction);

}

actionToList(listOfElement,printElement);

Une fonction est transmise en

tant que paramètre.

1
2
3

Programmation Fonctionnelle 24

Fonction de première classe

Exemple : JavaScript traite les fonctions comme des types de première
classe.

function random() {

return Math.random();

}

function magic() {

return random();

}

console.log(magic());

Une fonction est retournée

comme résultat d’une autre

fonction

0.44874968444293595

Programmation Fonctionnelle 25

Fonction de première classe

Quel est l’intérêt par rapport à une
méthode ?

Programmation Fonctionnelle 26

Fonction de première classe

Une nouvelle étendue de
possibilités : des fonctions d’ordre

supérieur …

Programmation Fonctionnelle 27

Concepts
de la PF

Fonction de
première classe

Fonction d'ordre
supérieur

Programmation Fonctionnelle 28

Fonction d'ordre supérieur

//code impératif

var tab = [1,2,3,4,5,6];

var tripleResult = [];

for(var i = 0; i < tab.length; i++) {

tripleResult [i] = tab[i] * 3 ;

}

Imaginez le scénario suivant …

1 2 3 4 5 6

3 6 9 12 15 18

Liste d’entiers

multiplier tous les éléments
par un entier (p. ex 3)

Programmation Fonctionnelle 29

Fonction d'ordre supérieur

Imaginez le scénario suivant …

Pourquoi faire compliqué quand on peut faire simple ?

Programmation Fonctionnelle 30

Fonction d'ordre supérieur

Imaginez le scénario suivant …

6

var tab = [1,2,3,4,5,6];

function triple(elem){

return elem*3;

}

console.log(triple(2));

Pourquoi ne pas simplement appliquer la fonction triple à ma
liste ?

function applyToList(list,myFunction){

list.forEach(myFunction);

}

applyToList(tab, triple);

Quelque chose comme ça …

Programmation Fonctionnelle 31

Fonction d'ordre supérieur

Imaginez le scénario suivant …

Ils ont pensé à nous !!!!

Programmation Fonctionnelle 32

Fonction d'ordre supérieur

//code impératif

var tab = [1,2,3,4,5,6];

var tripleResult = [];

for(var i = 0; i < tab.length; i++) {

tripleResult [i] = tab[i] * 3 ;

}

Donc pour faire ceci en programmation fonctionnelle …

1 2 3 4 5 6

3 6 9 12 15 18

Liste d’entiers

multiplier tous les éléments
par un entier (p. ex 3)

Programmation Fonctionnelle 33

Fonction d'ordre supérieur

var tab = [1,2,3,4,5,6];

function triple(elem){

return elem*3;

}

var tripleResult = tab.map(triple)

console.log(tripleResult);

[3, 6, 9, 12, 15, 18]

map applique la fonction triple sur tous

les éléments du tableau « tab ».

La fonction d’ordre supérieur map.

map (*3) [1,2,3,4,5,6]

Le langage de programmation utilisé est :

Javascript.

Attention

Des fonctions qui reçoivent ou produisent d’autres fonctions

Programmation Fonctionnelle 34

Fonction d'ordre supérieur

Dans le paradigme fonctionnel, les fonctions peuvent :

➢ (1) prendre des fonctions comme arguments.

➢ (2) retourner des fonctions comme résultats.

Rappel

Fondamental

Une fonction d'ordre supérieur est une fonction qui a au moins une des deux propriétés précédentes.

Programmation Fonctionnelle 35

Fonction d'ordre supérieur

//code impératif

var tab = [1,2,3,4,5,6];

result = 0;

for(var i = 0; i < tab.length; i++) {

result = result + tab[i];

}

1 2 3 4 5 6

21

Liste d’entiers

Calculer la somme de tous les
élément (réduire la liste à une

seule valeur.)

La fonction d’ordre supérieur reduce.

Programmation Fonctionnelle 36

Fonction d'ordre supérieur

var tab = [1,2,3,4,5,6];

function sum(result,elem){

return result+elem;

}

var sumOfArray = tab.reduce(sum,0)

console.log(sumOfArray);

21

reduce applique la fonction sum sur tous les

éléments du tableau « tab » afin de le réduire à une

seule valeur.

La fonction d’ordre supérieur reduce.

La valeur initiale de

l’accumulateur result

reduce (+,0) [1,2,3,4,5,6]

Programmation Fonctionnelle 37

Fonction d'ordre supérieur

//code impératif

pos = 0;

var filtredResult = [];

for(var i = 0; i < tab.length; i++) {

if (tab[i]>3){

filtredResult[pos] = tab[i] ;

pos = pos + 1;

}

}

1 2 3 4 5 6

Liste d’entiers

Retourner tous les éléments
qui remplissent une condition

(p.ex. elem>3)

3 4 5 6

La fonction d’ordre supérieur filter.

Programmation Fonctionnelle 38

Fonction d'ordre supérieur

var tab = [1,2,3,4,5,6];

function cond(elem){

return elem>3;

}

var filtredResult = tab.filter(cond)

console.log(filtredResult);

[4, 5, 6]

filter applique la fonction cond sur tous les

éléments du tableau « tab » pour retourner

tous les éléments qui remplissent la

condition déterminée par cette fonction

La fonction d’ordre supérieur filter.

filter (>3) [1,2,3,4,5,6]

Programmation Fonctionnelle 39

Exercice : Appliquer la notion

Programmation Fonctionnelle 40

Fonction d'ordre supérieur

Exercice : Appliquer la notion

const users = [

{ name: 'Ali', age: 25 },

{ name: 'Salim', age: 30 },

{ name: 'Yassine', age: 35 },

];

function getName(user) {

return user.name;

}

const names = users.map(getName);

console.log(names);

['Ali', 'Salim', 'Yassine']

const numbers = [1, 2, 3, 4, 5];

const doubled = numbers.map(num => num * 2);

console.log(doubled);

[2, 4, 6, 8, 10]

Arrow functions /

lambda expressions

Programmation Fonctionnelle 41

Fonction d'ordre supérieur

Exercice : Appliquer la notion

const numbers = [1, -2, 3, -4, 5, -6];

function isNegative(num) {

return num < 0;

}

const negativeNbrs = numbers.filter(isNegative);

console.log(negativeNbrs);

[-2, -4, -6]

const users = [

{ name: 'Ali', age: 25 },

{ name: 'Salim', age: 30 },

{ name: 'Yassine', age: 35 },

];

const olderUsers = users.filter(user => user.age > 30);

console.log(olderUsers);

[{ name: 'Yassine', age: 35 }]

Programmation Fonctionnelle 42

Concepts
de la PF

Fonction de
première classe

Données
immutables

Fonction d'ordre
supérieur

Programmation Fonctionnelle 43

Données immutables

Une variable immutable (immuable) (cannot change) est une variable qui ne peut pas être modifiée une fois la

variable initialisée.

Rappel

Immutability is a distinct notion than that of a constant : “Constants are immutable in the sense that they

cannot change. However, immutability refers to values, not to the assignment of values”.

Attention

s est immutable

String s = "x";

s=s+"y" ;

StringBuilder s = new StringBuilder "x";

s.append("y") ;

s est mutable

Programmation Fonctionnelle 44

Données immutables

String s = "x"; //1

s=s+"y" ; //2

String t = s; //3

t=t+"z" ; //4
String

“x”
String
“xy”

s

String
“xyz”

t
1 3 42

Le type « String » en Java est immutable !

Les variables de type « String » en Java sont immutables, c'est-à-dire que vous ne pouvez pas les

modifier. Ainsi, la modification d’une chaine de caractère de ce type (p. ex en utilisant l'opérateur de concaténation

ou une méthode comme toUpperCase) génère une nouvelle chaîne de caractère, au lieu de modifier le contenu de la

chaîne existante.

String
“xy” “x”

Programmation Fonctionnelle 45

Données immutables

StringBuilder s = new StringBuilder "x"; //1

s.append("y") ;

StringBuilder sb = s ; //2

sb.append("z") ;

s sb

1

“xyz”

2

Le type « StringBuilder » en Java est mutable !

Les variables de type « StringBuilder » en Java sont mutables, c'est-à-dire que vous pouvez les modifier sans

aucun problème. Ainsi, la modification d’une chaine de caractère de ce type modifie le contenu de la chaîne

existante.

Programmation Fonctionnelle 46

Données immutables

Les types mutables semblent beaucoup plus puissants
que les types immutables ...

Programmation Fonctionnelle 47

Données immutables

String s = "";

for (int i = 0; i < n; ++i) {

s = s + n;

}

StringBuilder sb = new StringBuilder();

for (int i = 0; i < n; ++i) {

sb.append(String.valueOf(i));

}

Imaginez le scénario suivant …

Gros défaut des données immutables : pour la modification des données immutables vous êtes obligé de créer

d’autres copies de ces données = Problème de performance (l'utilisation élevée de la mémoire).

Attention

Programmation Fonctionnelle 48

Données immutables

Les types mutables semblent beaucoup plus puissants
que les types immutables, mais les types immuables

sont plus sûrs et plus faciles à comprendre.

Programmation Fonctionnelle 49

Données immutables

Une chaîne de caractères littérale : est une séquence de caractères placée entre guillemets (" ") (p. ex. "Xyz").

Rappel

Pour des raisons d’optimisation en Java (gain d'espace et réduction de l'utilisation de la mémoire), les

références vers des chaînes littérales identiques pointent vers un même String. P. ex. ici, "IA" et "IA" sont deux

chaînes littérales identiques, s1 et s2 pointent donc vers un même String.

String s1 = "IA";

String s2 = "Java";

String s3 = "IA";

System.out.println(s1==s3);

True

Programmation Fonctionnelle 50

Données immutables

La classe String maintient un pool pour les chaînes de caractères littérales.

String pool
String s1 = "IA";

String s2 = "Java";

Java Heap

String s3 = "IA";

String s4 = new String("Java");

Pour la création d’une chaîne de

caractères littérale, le système recherche une

chaîne ayant la même valeur dans le pool.

➢ s'il la trouve, il renvoie simplement la

référence

➢ sinon il crée une nouvelle chaîne dans

le pool et renvoie sa référence.

Rappel

IA

Java

Java

Programmation Fonctionnelle 51

Données immutables

String pool

Pass1234

String passUser1 = "Pass1234";

Java Heap

String passUser2 = "Pass1234";

String passUser3 = "Pass1234";

Abc5000

Imaginez le scénario suivant : la gestion des mots de passe …

Si l’utilisateur « User 1 » veut changer son

mot de passe, que se passe-t-il si « String »

était un type mutable ?

passUser1 = "Abc5000";

Programmation Fonctionnelle 52

Données immutables

Imaginez le scénario suivant : la gestion des mots de passe …

String pool

Pass1234

Abc5000

String passUser1 = "Pass1234";

Java Heap

String passUser2 = "Pass1234";

String passUser3 = "Pass1234";

passUser1 = "Abc5000";

Heureusement « String » est immutable !

Programmation Fonctionnelle 53

Données immutables

Les variables de type « String » sont largement utilisées comme paramètres pour de nombreuses classes Java

(par ex. le port et l’adresse de l'hôte pour ouvrir une connexion réseau, le chemin des fichiers à lire, l’identifiant et

le mot de passe pour établir la connexion avec une base de données, ….)

Simplifier la gestion d’un état partagé (des variables thread-safe) : un type « String » mutable pourrait bien

causer de sérieuses menaces de sécurité à nos applications.

Attention

Immutable types are safer, and easier to understand

Programmation Fonctionnelle 54

Concepts
de la PF

Fonction de
première classe

Données
immutables

Fonction d'ordre
supérieur

Fonction
pure

Programmation Fonctionnelle 55

Fonction pure

Vers la transparence référentielle : adieu les effets de bord !

Fondamental

Les fonctions pures sont inspirées des fonctions mathématiques. Ainsi, elles possèdent deux propriétés:

➢ (1) Aucune mutation : elle retourne la même valeur pour les mêmes arguments (transparence

référentielle).

➢ (2) Aucune influence extérieure : elles n’engendre pas d’effet de bord (Side-effect free).

L’effet de bord « side effect » : on parle d’un effet de bord lorsque l’exécution d’un sous-programme cause la

modification d’un état (variable) en dehors de son environnement local.

Rappel

Programmation Fonctionnelle 56

Fonction pure

Fonction
pure

Always produce the same
output for same arguments
irrespective of anything else.

They have no side-effects

Programmation Fonctionnelle 57

Fonction pure

int triple(int elem){

return elem*3;

}

Triple

Résultats prédictibles : ils seront toujours les
mêmes quoi qu’il arrive.

4
6
7

4

12
18
21

12

int getSolde(String compte){

//requête SQL

}

Résultats imprédictibles : ils viennent d’une base
de données qui peut changer d’états.

getSolde

200C1 0
1500
1200

2000

250C6
150C5

200C1

Programmation Fonctionnelle 58

Fonction pure

Pure function are predictable, clean, transparent and safe :

➢ Easier to read.

➢ Easier to refactor.

➢ Easier to debug.

➢ Easier to test.

➢ Do not depend on anything else, so you don't have to care about time or the order of execution.

➢ Eencourage safe ways of programming (Thread-safe).

Programmation Fonctionnelle 59

Fonction pure

“Keep It Simple and Stupid”

is an important design principle in computer science.

Wherever possible, you should use pure
functions in your applications !

Pure functions are simple and stupid in the best
possible way.

Programmation Fonctionnelle 60

Exercice : Appliquer la notion

Programmation Fonctionnelle 61

Fonction pure

public int factorial(int a){

int i,f;

f=1;

for(i=1;i<=a;i++)

f=f*i;

return f;

}

Pure Impure

Exercice : Appliquer la notion

var init = 0;

function add(a,b){

init =1;

return a + b + init

}

Pure Impure

Programmation Fonctionnelle 62

Fonction pure

Exercice : Appliquer la notion

Solution

Programmation Fonctionnelle 63

Fonction pure

public int factorial(int a){

int i;

f=1;

for(i=1;i<=a;i++)

f=f*i;

return f;

}

Pure Impure

Exercice : Appliquer la notion

var init = 0;

function add(a,b){

init =1;

return a + b + init

}

Pure Impure

Programmation Fonctionnelle 64

Fonction pure

public void factorial(int a){

int i;

f=1;

for(i=1;i<=a;i++)

f=f*i;

System.out.println(f);

}

Pure Impure

Exercice : Appliquer la notion

function magic() {

return Math.random();

}

Pure Impure

Programmation Fonctionnelle 65

Fonction pure

Exercice : Appliquer la notion

Solution

Programmation Fonctionnelle 66

Fonction pure

public void factorial(int a){

int i;

f=1;

for(i=1;i<=a;i++)

f=f*i;

System.out.println(f);

}

Pure Impure

Exercice : Appliquer la notion

function magic() {

return Math.random();

}

Pure Impure

Programmation Fonctionnelle 67

Concepts
de la PF

Récursivité

Fonction de
première classe

Données
immutables

Fonction d'ordre
supérieur

Fonction
pure

Programmation Fonctionnelle 68

Récursivité

Un programme est appelé récursif lorsque une entité

de ce programme (p. ex une fonction) s’appelle elle-

même.

Rappel

La programmation récursive permet d’implémenter

des fonctions définies à partir de relations de récurrence

(P. ex. la factorielle et les suites).

U0= 0

U1= 1

Un= Un−1+ Un−2Si n ≥ 2

Suite de
Fibonacci

Programmation Fonctionnelle 69

Récursivité
Fondamental

La récursivité permet de résoudre un problème complexe en le ramenant à une succession de problèmes plus

simples. Pour ce faire, il nous faut définir 2 choses :

➢ (1) une condition d’arrêt;

➢ (2) le comportement récursif.

function fact(n) {

if (n === 1)

return 1;

else

return n * fact(n-1);

}

La condition d’arrêt

Le comportement récursif

fact(5) = 5 * (fact(4))

fact(5) = 5 * (4 * fact(3))

fact(5) = 5 * (4 * (3 * fact(2)))

fact(5) = 5 * (4 * (3 * (2 * fact(1))))

Programmation Fonctionnelle 70

Récursivité Cas de base

fact(5)

5! = 5 * 4!

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1!

1! = 1Cas de base

2*1 = 2

1

4*6 = 24

5*24 = 120

fact(5) = 5 * (4 * (3 * (2 * (1))))

fact(5) = 5 * (4 * (3 * (2)))

fact(5) = 5 * (4 * (6))

fact(5) = 5 * (24)

fact(5) = 120

3*2 = 6

Le calcul de la fonction factoriel débute lorsque la

fonction rencontre son cas de base.

Programmation Fonctionnelle 71

Récursivité

Boucle (itératif)

InstructionsCondition

Récursif

Impératif vs itératif vs récursif vs fonctionnel

Programmation Fonctionnelle 72

Récursivité

Impératif vs itératif vs récursif vs fonctionnel

Students often mistakenly associate iterative with

imperative and recursive with functional.

Programmation Fonctionnelle 73

Récursivité

Un programme

impératif

Un programme

purement fonctionnel

Itératif

(boucle)
Récursif

Peut être

La plupart des langages de programmation

purement fonctionnels ne comportent pas de

boucles, car toutes les données sont immuables

(la valeur de la condition d'une boucle ne

changera jamais)

Impératif vs itératif vs récursif vs fonctionnel

Programmation Fonctionnelle 74

Concepts
de la PF

Fonction de
première classe

Données
immutables

Fonction d'ordre
supérieur

Fonction
pure

Évaluation
paresseuse

Récursivité

Evaluation stricte (immédiate) : est une technique d’implémentation des langages de programmation qui

consiste à exécuter les instructions d’un programme dans un ordre séquentiel jusqu’au point de sortie.

Rappel

Programmation Fonctionnelle 75

Évaluation paresseuse

function fact(n) {

if (n === 0 || n === 1)

return 1;

for (var i = n - 1; i >= 1; i--) {

n *= i;

}

return n;

}

Style impératif (itératif) : une séquence structurée

d’instructions modifiant l’état du programme.

Evaluation stricte : les instructions sont exécutées dans

un ordre séquentiel jusqu’au point de sortie.

L’évaluation paresseuse (évaluation retardée/lazy evaluation) : est une technique d’implémentation des

langages de programmation qui permet de n’exécuter une partie d’un code que lorsque le résultat de cette partie est

devenue réellement nécessaire.

Fondamental

Programmation Fonctionnelle 76

Évaluation paresseuse

Style fonctionnel : ensemble de fonctions que l’on peut imbriquer les unes dans les autres.

Evaluation paresseuse : reporter ce que tu n’as pas besoin de faire maintenant à plus tard ou à jamais.

Programmation Fonctionnelle 77

Évaluation paresseuse

function recommandation(day,temperature){

if (day == "Friday" && temperature > 20)

console.log("Aller se promener");

}

recommandation("Monday",26);

Vu que le jour est différent de « Friday » le résultat du deuxième test

(temperature > 20) importe peu (cette partie ne sera jamais exécutée).

L'expression de droite n’est

évaluée que si elle est nécessaire

fact(5) = 5 * (4 * (3 * (2 * (1))))

fact(5) = 5 * (4 * (3 * (2)))

fact(5) = 5 * (4 * (6))

fact(5) = 5 * (24)

Programmation Fonctionnelle 78

Évaluation paresseuse

Fondamental

L’évaluation paresseuse permet d’optimiser l’exécution en suivant une approche originale impossible à

envisager avec l’évaluation strict. (p. ex. la définition des structures infinies : en adoptant une évaluation strict, le

programme tenterait d’évaluer indéfiniment les termes de la suite et ne terminerait jamais).

Lazy evaluation : la procrastination peut être une bonne idée

Seuls les termes

nécessaires sont

calculé.

fact(5) = 5 * (fact(4))

fact(5) = 5 * (4 * fact(3))

fact(5) = 5 * (4 * (3 * fact(2)))

fact(5) = 5 * (4 * (3 * (2 * fact(1))))

Cas de base

fact(5) = 120

Programmation Fonctionnelle 79

Concepts
de la PF

Récursivité

Fonction de
première classe

Données
immutables

Fonction d'ordre
supérieur

Fonction
pure

Évaluation
paresseuse

Programmation Fonctionnelle 80

Connexion au système mutable

Même dans un programme fonctionnel la mutabilité peut être utile dans certains cas : la programmation

fonctionnelle est très intéressante, mais à un moment ou à un autre, un programme aura besoin d’afficher des

résultats sur un écran ou de persister un état dans une base de données.

Une fois arrivé à ce stade, le travail du paradigme fonctionnel est terminé : toute la partie mutable se fait

en dehors de l’architecture fonctionnelle, dans des fonctions impures sur un paradigme procédural ou orienté

objets, …

Programmation Fonctionnelle 81

Avantages et Inconvénients

Avantages Inconvénients

Généricité, Réutilisation, modularité.

Meilleure testabilité et fiabilité.

Adapter à la programmation concurrente.

Les fonctions pures sont plus faciles à

comprendre et à tester car elles ne changent

aucun état.

Une façon de pensé différente

Déclaratif (pas de contrôle du comportement)

Mois lisible.

L'écriture de fonctions pures est facile, mais

leur combinaison avec le reste de l'application

(impures) est difficile.

Programmation Fonctionnelle 82

La programmation fonctionnelle va tuer la programmation

orientée objet ?

Non, car la PF n’est pas meilleure que la POO, c’est juste une manière différente de programmer,

avec ses avantages et ses inconvénients.

Le choix entre POO et fonctionnelle se fait selon le contexte du projet (Analogie Théorème

de CAP dans les BD).

Question fréquente

Programmation Fonctionnelle 83

Théorème de CAP (Brewer) : il est impossible dans une base de données de respecter en même temps les trois

contraintes suivantes : la cohérence (Consistency), la disponibilité (Availability) et la distribution (Partition).

Rappel

Programmation Fonctionnelle 84

Exercice : Appliquer la notion

Programmation Fonctionnelle 85

Exercice : Appliquer la notion

Soit le programme javascript suivant :

function sum(x,y){

return x + y;

};

const oddNumbers = [1,3,5,7,9];

var s = 5;

function f(x,init){

return x.reduce(sum,init)

};

console.log(f(oddNumbers,s));

 f est une fonction de première classe, car elle ne

prend pas une fonction comme paramètre.

 f est une fonction impure, car elle n’engendre pas

un effet de bord et elle respecte le principe de la

transparence référentielle.

 f est une fonction d’ordre supérieur, car elle est

considérée comme n'importe quel autre type de

variable.

 le résultat d’affichage de ce programme est : 25.

 le résultat d’affichage de ce programme est : [30].

 Aucune réponse n'est juste.

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40
	Diapositive 41
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46
	Diapositive 47
	Diapositive 48
	Diapositive 49
	Diapositive 50
	Diapositive 51
	Diapositive 52
	Diapositive 53
	Diapositive 54
	Diapositive 55
	Diapositive 56
	Diapositive 57
	Diapositive 58
	Diapositive 59
	Diapositive 60
	Diapositive 61
	Diapositive 62
	Diapositive 63
	Diapositive 64
	Diapositive 65
	Diapositive 66
	Diapositive 67
	Diapositive 68
	Diapositive 69
	Diapositive 70
	Diapositive 71
	Diapositive 72
	Diapositive 73
	Diapositive 74
	Diapositive 75
	Diapositive 76
	Diapositive 77
	Diapositive 78
	Diapositive 79
	Diapositive 80
	Diapositive 81
	Diapositive 82
	Diapositive 83
	Diapositive 84
	Diapositive 85

