
tutorial number 1

Exercise 01 :

Let D be a domain of \mathbb{R} (\mathbb{C}); $x_0 \in \overline{D}$ and two functions φ and ψ defined on D with real or complex values.

1. Demonstrate in the neighborhood of the point x_0 the following operations
 - (a) If $\varphi = O(\psi)$ and $\alpha > 0$ then $|\varphi|^\alpha = O(|\psi|^\alpha)$.
 - (b) If $\varphi_i = O(\psi_i)$, $i = 1, 2, \dots, n$ and a_i constants then $\sum_{i=1}^n a_i \varphi_i = O(\sum_{i=1}^n |a_i| |\psi_i|)$.
 - (c) If $\varphi_i = O(\psi_i)$, $i = 1, 2, \dots, n$ and if it exists ψ such that $\psi_i \leq \psi$, and a_i constants then $\sum_{i=1}^n a_i \varphi_i = O(\psi)$.
 - (d) If $\varphi_i = O(\psi_i)$, $i = 1, 2, \dots, n$, then $\prod_{i=1}^n a_i \varphi_i = O(\prod_{i=1}^n \psi_i)$.
 - (e) Let $x \in \mathbb{R}$, $D =]a, b[\subset \mathbb{R}$, if $\varphi(x) = O(\psi(x))$; when $x \rightarrow b$, and if φ and ψ are integrable in D , then $\int_x^b \varphi(t) dt = O(\int_x^b |\psi(t)| dt)$, $x \rightarrow b$.
 - (f) Let a parameter $\xi \in]\alpha, \beta[$ and let $\varphi(x, \xi)$ and $\psi(x, \xi)$ two functions depend on the parameter ξ , and $\varphi(x, \xi) = O(\psi(x, \xi))$ uniformly when $x \rightarrow x_0$, then $\int_\alpha^\beta \varphi(x, \xi) d\xi = O(\int_\alpha^\beta |\psi(x, \xi)| d\xi)$, $x \rightarrow x_0$.
2. Demonstrate all operations (a – f) for (o) and (\sim) .

Exercise 02 :

Let $\gamma > 0$, the aim of the exercise is to prove that $e^{\gamma n} = o(n!)$. ($n \in \mathbb{N}^*$)

For this, we pose, for $n \geq 1$, $u_n = e^{\gamma n}$ and $v_n = n!$.

1. Prove that there exists an integer $n_0 \in \mathbb{N}$ such that, for all $n \geq n_0$,

$$\frac{u_{n+1}}{u_n} \leq \frac{1}{2} \frac{v_{n+1}}{v_n}.$$

2. Deduce that there exists a constant $c > 0$ such that, for all $n \geq n_0$,

$$u_n \leq c \left(\frac{1}{2}\right)^{n-n_0} v_n.$$

3. Conclude that

$$e^{\gamma n} = o(n!).$$