
Tarek Boutefara – t_boutefara@univ-jijel.dz – Version 0.1, 20-11-2024

1. Introduction

2. Presentation of L1

2.1. Syntax

2.2. Example

3. Structural Operational Semantics

3.1. Presentation

3.2. Storage space de�nition

3.3. Transition system de�nition

3.4. Operational semantics of the L1 language

3.5. Operational semantics and language design

3.6. Other elements of Operational Semantics

4. Axiomatic Semantics (Program Proof)

4.1. Program proof

4.2. Program Correctness

4.3. Application of Hoare logic: Proof tree and program annotation

4.4. Proof of functional programs

5. Conclusion

To be able to practise language semantics, we need an experimental language. In fact, ‘complete’ programming languages are too complex and have very rich syntaxes that evolve continuously.

In the context of this course, it will be difficult to include all the syntax and API of a complete general-purpose language such as Java or C. So we’re going to look at L1, a reduced and limited

language but one that offers, at the same time, enough elements to experiment with.

After the presentation of L1, we will look at operational semantics. Operational semantics is the first type of semantics. It represents the meaning of a program in terms of the computational steps it

performs in an idealised execution.

L1 is an imperative programming language for manipulating integers. It offers a storage system (locations) where each location stores an integer. The language also has a conditional structure and

the "while" loop.

• Booleans

• Integers

• Locations

• Operations

• Expressions

e ::= n | b | op | ; |

l := e | !l |

if then else |

while do |

skip

The set of Booleans contains only two values, ‘true’ and ‘false’.

The set of integers corresponds to the mathematical set .

Locations refer to the memory areas in which integers are stored. The syntax defines names of the form .

For this reduced syntax, we define two operations:

• the addition operation, it takes two operands and returns their sum,

• the ‘greater than or equal to’ binary operator, which returns "true" if the first operand is greater than or equal to the second operand.

• An integer is an expression,

• A boolean is an expression,

𝑏 ∈ 𝔹 = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}
𝑛 ∈ ℤ = {..., − 2, − 1, 0, 1, 2, ...}

𝑙 ∈ 𝕃 = { , , , , , ...}𝑙0 𝑙1 𝑙2 𝑙3 𝑙4

𝑜𝑝 : := + ∣ ≥

𝑒1 𝑒2 𝑒1 𝑒2

𝑒1 𝑒2 𝑒3
𝑒1 𝑒2

ℤ

𝑙𝑖

+
≥

𝑛

𝑏

mailto:t_boutefara@univ-jijel.dz
mailto:t_boutefara@univ-jijel.dz

• Applying an operation is an expression :

◦ ,

◦ ,

• Sequencing two expressions is an expression. Sequencing is defined by a semi-colon ‘;’,

• The assignment is an expression. It is represented by the symbol ‘:=’. The left part of the assignment is a location and the right part is an expression such as

• Access to the value of the rental: if refers to the rental itself, its value is obtained by ,

• The traditional If…Else…Endif structure,

• The traditional While loop.

This program calculates the sum of integers from 1 to 10.

• Note the construction of a block using parentheses.

• Note also that we don’t have subtraction, so we use sum with negative integers.

There are two approaches to operational semantics:

• this approach describes the individual execution steps of a program. This approach is also known as Structural Operational Semantics.

• this approach describes the overall result of execution

We can define small-step semantics for a language L by defining two components:

• A set S of execution states,

• A transition system on S that links each state to all the states that can be reached by executing a single step.

If two states and are linked, then there is a transition from to that we note . For example in the case of an arithmetic expression, we can have this transition:

•

•

This evaluation can be represented in the form of an evaluation tree:

In this way, operational semantics can be seen as the discovery of an execution tree.

We can define a storage space as a finite partial function of the set of memory spaces (or locations) to the set of integers .

For example, let be the storage space with two locations that saves two values. It can be defined by :

•

A transition system consists of a :

• A Configuration set, and

𝑥 + 𝑦

𝑥 ≥ 𝑦

:= 1 + 10𝑙1

𝑙𝑖 !𝑙𝑖

l1 := 10;
l2 := 0;

while !l1 ≥ 1 do(
l2 := !l2+!l1;
l1:= !l1 + −1)

𝑠 𝑠′ 𝑠 𝑠′ 𝑠 → 𝑠′

3 + (5 + 6) → 3 + 11
3 + 11 → 14

𝕃 ℤ

{ ↦ 54, ↦ 62}𝑙1 𝑙3

• A binary relation → in Configuration * Configuration.

The elements of the Configuration set are called configurations or states.

The relation → is called transition or reduction. We note c → c' to designate that c can make a transition to c’.

Transitions can be stopped when there is no state c' to which the current state c can transition.

That is:

•

In this case, we note:

• ;

A configuration can be seen as a pair which consists of an expression e and a storage space s. Thus, a transition can be defined by:

•

A transition is a single execution step (of the computation).

This transition relation is said to be deterministic if for each state c there exists at most one state c' such that . This property can also be written in the following form:

•

The L1 language defines the set of locations 𝕃, thus, the notion of storage space. The L1 language also defines the ‘skip’ instruction to designate the end of execution.

We note that execution also stops when there is no state to which it is possible to transit from the current state. This can be translated by the appearance of an execution error (such as: 10 + false).

We can define the operational semantics of operations in L1 by the following rules :

(op) if

(op) if

(op1)

(op2)

We define the dom function on the storage space s. It returns the list of currently defined locations. The dereferencing function ‘!’ can be defined using the following semantics:

(deref) if

Indeed, if , we have the equivalent of the ‘variable l has not been declared’ error.

The assignment is the instruction used to change a value in the storage space. For example, if l is a location and v1 and v2 are two values and there is no instruction after the assignment :

•

The assignment can go through several steps if the expression on the right is not a value.

(assign1) if

(assign2)

Example :

•

•

•

•

(seq1)

(seq2)

(if1)

¬ ∃ 𝑐′ . 𝑐 → 𝑐′

𝑐 →

〈𝑒, 𝑠〉

〈𝑒, 𝑠〉 → 〈𝑒′ , 𝑠′ 〉

𝑐 → 𝑐′

∀ 𝑐. ∀ 𝑐′ , 𝑐′ ′ . (𝑐 → 𝑐′ ∧ 𝑐 → 𝑐′ ′) ⇒ 𝑐′ = 𝑐′ ′

+ ≥

+ 〈 + , 𝑠〉 → 〈𝑛, 𝑠〉𝑛1 𝑛2 𝑛 = +𝑛1 𝑛2

≥ 〈 ≥ , 𝑠〉 → 〈𝑏, 𝑠〉𝑛1 𝑛2 𝑏 = (≥)𝑛1 𝑛2

〈 , 𝑠〉 → 〈𝑒 , 𝑠′ 〉𝑒1 ′1
⟨ op , 𝑠⟩ → ⟨𝑒 op , 𝑠′ ⟩𝑒1 𝑒2 ′1 𝑒2

〈 , 𝑠〉 → 〈𝑒 , 𝑠′ 〉𝑒2 ′2
⟨𝑣 op , 𝑠⟩ → ⟨𝑣 op 𝑒 , 𝑠′ ⟩𝑒2 ′2

〈 !𝑙, 𝑠〉 → 〈𝑛, 𝑠〉 𝑙 ∈ 𝑑𝑜𝑚(𝑠) et 𝑠(𝑙) = 𝑛

𝑙 ∉ 𝑑𝑜𝑚(𝑠)

〈𝑙 := 𝑣2, {𝑙 ↦ 𝑣1}〉 → 〈𝑠𝑘𝑖𝑝, {𝑙 ↦ 𝑣2}〉

〈𝑙 := 𝑛, 𝑠〉 → 〈𝑠𝑘𝑖𝑝, 𝑠 + {𝑙 ↦ 𝑛}〉 𝑙 ∈ 𝑑𝑜𝑚(𝑠)

〈𝑒, 𝑠〉 → 〈𝑒′ , 𝑠′ 〉
〈𝑙 := 𝑒, 𝑠〉 → 〈𝑙 := 𝑒′ , 𝑠′ 〉

〈𝑙 := 8 + !𝑙, {𝑙 ↦ 54}〉 → 〈𝑙 := 8 + 54, {𝑙 ↦ 54}〉
〈𝑙 := 8 + 54, {𝑙 ↦ 54}〉 → 〈𝑙 := 62, {𝑙 ↦ 54}〉
〈𝑙 := 62, {𝑙 ↦ 54}〉 → 〈𝑠𝑘𝑖𝑝, {𝑙 ↦ 62}〉
〈𝑠𝑘𝑖𝑝, {𝑙 ↦ 62}〉 →

〈𝑠𝑘𝑖𝑝; , 𝑠〉 → 〈 , 𝑠〉𝑒2 𝑒2

〈 , 𝑠〉 → 〈𝑒 , 𝑠′ 〉𝑒1 ′1
〈 ; , 𝑠〉 → 〈𝑒 ; , 𝑠′ 〉𝑒1 𝑒2 ′1 𝑒2

〈if true then else , 𝑠〉 → 〈 , 𝑠〉𝑒2 𝑒3 𝑒2

(if2)

(if3)

(while)

Let be :

•

•

Evaluate

In the semantic definition of the different elements of the language, we have already made decisions concerning the order of evaluation and the result of the different instructions.

For example, the order defined for the evaluation of an expression specifies that the first operand must be completely evaluated before starting to evaluate the second operand. This is a

left-to-right evaluation. It is possible to define a right-to-left evaluation by changing the operational semantics of the operations as follows:

(op1b)

(op2b)

Another example of the design choices made in the programming language is the result of the assignment. By reviewing the definition of (assign1), we see that the assignment returns nothing. In

conjunction with the sequencing rule, the returned by the assignment allows the evaluation to continue. However, according to the definition given, it is not possible to have an instruction of

the form:

• where v is a value.

This instruction is valued at :

•

This state cannot be evaluated.

To support the above instruction, a new assignment rule and a new sequencing rule can be defined as follows:

• (assign1b) if

• (seq1b)

This new definition is widely used in languages including C, C++ and Java.

The assignment also defines a condition. This is . This means that the assignment requires a prior definition of the locations. This can be seen in the Pascal language, for example,

where all variables must be declared before starting the main program.

It is possible to define the possibility where and the ability to add new rentals to .

The definition of a complete operational semantics requires the definition of rules for other elements, even for an experimental language like L1. For example :

The semantics can be enriched by adding variable typing (locations). In fact, the defined demantics does not allow :

• Store data other than integers, so the expression cannot be evaluated,

• It is possible to write the expression , however, it will evaluate to which cannot be evaluated.

In the case of L1, we can define three types:

• The integer type,

• The Boolean type,

• A type for other units such as .

Thus, we can define the set:

•

As syntax, we can add the type by:

〈if false then else , 𝑠〉 → 〈 , 𝑠〉𝑒2 𝑒3 𝑒3

〈 , 𝑠〉 → 〈𝑒 , 𝑠′ 〉𝑒1 ′1
〈if then else , 𝑠〉 → 〈if 𝑒 then else , 𝑠′ 〉𝑒1 𝑒2 𝑒3 ′1 𝑒2 𝑒3

〈while do , 𝑠〉 → 〈if then (; while do 𝑒2) else 𝑠𝑘𝑖𝑝, 𝑠〉𝑒1 𝑒2 𝑒1 𝑒2 𝑒1

𝑒 = (:= 0; while ! ≥ 1 do (:= ! + ! ; := ! + − 1))𝑙2 𝑙1 𝑙2 𝑙2 𝑙1 𝑙1 𝑙1

𝑠 = { ↦ 3, ↦ 0}𝑙1 𝑙2

〈𝑒, 𝑠〉

 op 𝑒1 𝑒2

〈 , 𝑠〉 → 〈𝑒 , 𝑠′ 〉𝑒2 ′2
⟨ op , 𝑠⟩ → ⟨ op 𝑒 , 𝑠′ ⟩𝑒1 𝑒2 𝑒1 ′2

〈 , 𝑠〉 → 〈𝑒 , 𝑠′ 〉𝑒1 ′1
⟨ op 𝑣, 𝑠⟩ → ⟨𝑒 op 𝑣, 𝑠′ ⟩𝑒1 ′1

𝑠𝑘𝑖𝑝

:= = 𝑣𝑙1 𝑙2

:= 𝑠𝑘𝑖𝑝𝑙1 →

〈𝑙 := 𝑣, 𝑠〉 → 〈𝑣, 𝑠 + {𝑙 ↦ 𝑣}〉 𝑙 ∈ 𝑑𝑜𝑚(𝑠)
〈𝑣; , 𝑠〉 → 〈 , 𝑠〉𝑒2 𝑒2

𝑙 ∈ 𝑑𝑜𝑚(𝑠)

𝑙 ∉ 𝑑𝑜𝑚(𝑠) 𝑑𝑜𝑚(𝑠)

𝑙 := 𝑓𝑎𝑙𝑠𝑒

2 + (5 ≥ 3) 2 + 𝑓𝑎𝑙𝑠𝑒

𝑠𝑘𝑖𝑝

𝑇 = {int, bool, unit}

• T ::= int|bool|unit

It is possible to add the type as a premise to their definitions given earlier:

(op)

(op)

This first version of L1 does not define the notion of ‘functions’. It is possible to extend this first version to obtain a second version, L2, which supports the declaration of functions.

Defining functions requires extending the syntax to support the notion of variable :

•

We also need to extend the expressions:

•

The type can be:

•

This syntax allows the definition of function like:

•

•

These two functions are equivalent to the following C functions:

Or in Javascript :

Axiomatic or Logical Semantics is aimed at verifying (proving) programs. This semantics makes it possible to follow the execution of a program without influencing the definition of the language

itself; this differs from the Operational Semantics we saw in the previous section.

The purpose of program proof is to check whether a program written in a given language really does what it is supposed to do.

Consider the program :

This program calculates the sum . It is possible to check its value by performing a step-by-step execution based on the rules defined in the Operational Semantics of the language used.

However, if we change the program so that it becomes:

+ Γ ⊢ : int, Γ ⊢ : int𝑒1 𝑒2
Γ ⊢ + : int𝑒1 𝑒2

≥ Γ ⊢ : int, Γ ⊢ : int𝑒1 𝑒2
Γ ⊢ ≥ : bool𝑒1 𝑒2

𝑥 ∈ 𝕏

𝑒 : := ...|fn 𝑥 : 𝑇 ⇒ ; 𝑒| ∣ 𝑥𝑒1𝑒2

𝑇 : := int|bool|unit ∣ →𝑇1 𝑇2

(fn 𝑥 : int ⇒ 𝑥 + 1)
(fn 𝑥 : int ⇒ (fn 𝑦 : int ⇒ 𝑥 + 𝑦))

int succ(int x){
return x + 1;

}

int somme(int x, int y){
return x + y;

}

let succ = (x) => x + 1

let somme = (x) => (y) => x + y

S := 0
N := 1

While (Not (N = 101)) Do
S := S + N;
N := N + 1;

EndWhile

𝑖∑
1≤𝑖≤100

Read(P)

S := 0
N := 1

While (Not (N = P)) Do
S := S + N;
N := N + 1;

EndWhile

This small modification generalises the calculation and the new formula is: .

It is difficult to run for all values of P given that the user can introduce an infinite number of values (a different value for each run). Thus, this testing approach no longer becomes sufficient to

prove that a program does exactly what is expected of it.

So, to prove a program, it is necessary to use a more logical proof system. In this context, Hoare (or Floyd Hoare) logic is designed to solve this problem. As we introduced in Chapter 2, it is a formal

system that defines a set of rules for proving a program.

In addition to proving programs, Hoare’s logic can be used to define the semantics of program structures using ‘axioms’, hence the name ‘ Axiomatic Semantics’.

The correction of a program mentioned above is called total correction. It specifies that the programme returns the correct value. It can be seen in two parts:

• The programme returns a value,

• If the programme returns a value, this value is correct.

The first point is called the ‘termination’ of the programme. We prove that the programme terminates and does not continue to run ad infinitum (infinite loop). It is possible to prove that the

function converges and does not diverge.

The second point is ‘partial correction’. The total correction is obtained by combining the two points.

To follow the axiomatic semantics, it is possible to opt for two representations:

• Write a proof tree: the neouds are Hoare triplets that represent the different structures present in the program to be proved. The extraction of the different neouds is based on sequencing,

conditionals and loops.

• Annotate the program: i.e. add notes related to its proof. Each note is a distributed Hoare triplet.

Consider the following program:

In general, the proof is made in reverse order. You start by proving [1], then [2], and so on.

In this tree, F is called the invariant of the loop and is the key to the problem to be solved. We need to propose an invariant and try to build the proof around it.

In this example, we can take:

𝑖∑
1≤𝑖≤𝑃

i := 0
r := 1

While (Not (i = n)) Do
i := i + 1
r := r * i

EndWhile

return r

• F = (r = i!)

The aim is to find the expressions and show the validity of the formulae .

Consider the following program:

 Prove that this program calculates a².

For this algorithm, the loop invariant can be set as :

• F = (x1 = x2²)

In fact, we can check :

• {x1 = x2²} x1 := x1 + 2 * x2 + 1; x2 := x2 + 1 {x1 = x2²}

Since the precondition is assumed to be correct, then :

• x1 := x1 + 2 * x2 + 1 ⇒

• x1 := x2² + 2 * x2 + 1 ⇒

• x1 := (x2 + 1)²

{True}
f1 i := 0
{e1}
f2 r := 1
{e2}

While (Not (i = n)) Do
{e3}
f3 i := i + 1
{e4}
f4 r := r * i
{e5}

f5 EndWhile
{e6}
f6 return r
{r = n!}

𝑒𝑖 : { }𝑐𝑜𝑑𝑒{ + 1}𝑓𝑖 𝑒𝑖 𝑒𝑖

Read(a)

x1 := 0
x2 := 0

While (Not (x2 = a)) Do
x1 := x1 + 2 * x2 + 1
x2 := x2 + 1

EndWhile

And with the second instruction :

• x2 := x2 + 1

So the post-condition x1 = x2² is correct.

By defining F, we can start to prove the different nodes in reverse post-order.

• Proof of [1]: F and (x2 = a) ⇒ (x1 = a²) :

◦ By replacing F by x1 = x2², we find (x1 = a²).

• Proof of [2]: {I} x2 := x2 + 1 {F}

◦ Using F, we find that I is: x1 = (x2 + 1)²

• Proof of [3]: {J} x1 := x1 + 2 * x2 + 1 {I}

◦ Using I, J is then: x1 = x2²

• Proof of [4]: F & non (x2 = a) ⇒ J

◦ We already have the value of F and J, verifying that (x1 = x2²) and (non(x2 = a)) ⇒ (x1 = x2²)

• Proof of [5]: {G} x2 := 0 {F}

◦ Using F, it is possible to set G as x1 = 0

• Proof of [6]: {H} x1 := 0 {G}

◦ Using the definition of assignment, it is sufficient to set 0 = 0

• Proof of [7]: (a ≥ 0) ⇒ H

◦ Since H (0 = 0) is always true, then the implication is true.

The advantage of the functional programming paradigm is that programmes are easy to prove. Functional programmes are :

• Without repetitive processing: in this case, it is a simple process or, at most, a conditional structure. There is no assignment or sequencing.

• With repetitive processing: these are recursive programmes. In this case, the dy fixed point theory is used.

We will focus on this second case, where the use of Hoare logic may not be appropriate.

Consider two functions and in the set of functions from E into F (noted). We define the inclusion if any in E such that is defined, then is also defined and

.

The set with the relation The set is inductive (complete lattice) and its smallest element (the function that is nowhere defined).

Consider (E <) a complete lattice and F a function from E into E.

Si F est croissante alors il existe une solution minimale à l’équation , c’est-à-dire, pour toute autre solution y nous avons .

If F is increasing then there exists a minimal solution to the equation , that is, for any other solution y we have .

If moreover F is continuous is equal to the limit of the sequence , bi being the lower bound of E.

À tout programme fonctionnel récursif correspond une application de dans . Autrement dit, un programme prend une fonction de E dans F et retourne une fonction de E

dans F. De plus, l’application est continue, ainsi, le programme est vu comme une équation à point fixe : dont le plus petit point fixe coïncide avec la fonction calculée par le

programme.

To any recursive functional program corresponds an application of in . In other words, a program takes a function from E into F and returns a function from E into F.

Furthermore, the application is continuous, so the program is seen as a fixed-point equation: whose smallest fixed point coincides with the function calculated by the program.

The function x! can be seen as the smallest solution of the fixed-point equation :

•

If we put:

•

It has the form:

•

𝑓 𝑔 ℜ(𝐸, 𝐹) 𝑓 ⊆ 𝑔 𝑥 𝑓(𝑥) 𝑔(𝑥)
𝑓(𝑥) = 𝑔(𝑥)

ℜ(𝐸, 𝐹) ⊆ Ω

𝑥0 𝐹 (𝑥) = 𝑥 < 𝑦𝑥0

𝑥0 𝐹 (𝑥) = 𝑥 < 𝑦𝑥0

𝑥0 (𝑏𝑖)𝐹 𝑛

𝑓 𝜏 ℜ(𝐸, 𝐹) ℜ(𝐸, 𝐹)
𝜏 𝑓 = 𝜏(𝑓)

𝑓 𝜏 ℜ(𝐸, 𝐹) ℜ(𝐸, 𝐹)
𝜏 𝑓 = 𝜏(𝑓)

𝑓 = 𝜆𝑥. if 𝑥 = 0 then 1 else 𝑥 ⋅ 𝑓(𝑥 − 1) endif

𝜏(𝑓) = 𝜆𝑥. if 𝑥 = 0 then 1 else 𝑥 ⋅ 𝑓(𝑥 − 1) endif

𝜏(𝑓) = 𝑓

Thus, based on this theory, we can say:

• To prove that a recursive functional program calculates a given function , it suffices to show that is the smallest fixed of 𝜏.

• If is not the smallest fixed point of , but simply a fixed point, then we can conslure partially computes the function .

If we do not know can be found by calculating the smallest fixed point of which is equal to the limit of when n tends to infinity.

Consider the following functional program :

•

Show that this program calculates :

•

To do this, it is sufficient to show that is a solution of the equation . That is:

•

We have two possibilities depending on the condition in the If…Else…EndIf structure:

• In the case of x = y, the result is y + 1 or x + 1, which is equivalent to the function.

• In the case of x ≠ y, the internal call gives x and the call also gives x + 1, which is also g.

So we can say that the function calculates (or at least partially calculates) the function .

Consider the following program:

•

To determine the smallest fixed point, simply calculate .

• Evaluation of

◦

◦

• Evaluation of

◦

◦

◦

◦

• Evaluation of

◦

◦

◦

◦

• Evaluation of

◦

◦

◦

◦

We observe that tends to calculate the product:

•

In this last chapter, we presented L1, an experimental language which defines a minimum of structure but which makes it possible to write complete programs. The aim is to have a reduced

instruction set so that the different semantics can be defined and practised.

We have also seen Operational Semantics. These semantics are intended for compiler designers, as they enable the behaviour of the various language structures to be defined. We also saw the

notion of ‘conceptual choice’, which refers to the different choices made by the compiler designer, and how to express and change this behaviour using operational semantics.

We were also able to define two types of proof:

• Using Hoare logic, hence the name ‘axiomatic’ for this semantics.

𝜏 𝑓 𝑓

𝑓 𝜏 𝜏 𝑓

𝑓 𝜏 (Ω)𝜏𝑛

𝑓 = 𝜆𝑥𝑦. If 𝑥 = 𝑦 Then 𝑦 + 1 Else 𝑓(𝑥, 𝑓(𝑥 − 1, 𝑦 + 1)) EndIf

𝑔 = 𝜆𝑥𝑦. 𝑥 + 1

𝑔 𝜏(𝑔) = 𝑔

𝜏(𝑔) = 𝜆𝑥𝑦. If 𝑥 = 𝑦 Then 𝑦 + 1 Else 𝑔(𝑥, 𝑔(𝑥 − 1, 𝑦 + 1)) EndIf

𝑔

𝑔(𝑥 − 1, 𝑦 + 1) 𝑔(𝑥, 𝑥)

𝑓 𝑔

𝑓 = 𝜏(𝑓) = 𝜆𝑥. If 𝑥 = 0 Then 1 Else 𝑥 ⋅ 𝑓(𝑥 − 1) EndIf

𝜏(Ω), (Ω), (Ω), (Ω), ...𝜏2 𝜏3 𝜏4

𝜏(Ω)
𝜏(Ω) = If 𝑥 = 0 Then 1 Else 𝑥 ⋅ Ω(𝑥 − 1) EndIf
= If 𝑥 = 0 Then 1 Else Ω EndIf

(Ω) = 𝜏(𝜏(Ω))𝜏2

(Ω) = If 𝑥 = 0 Then 1 Else (𝑥) ⋅ 𝜏(Ω)(𝑥 − 1) EndIf𝜏2

= If 𝑥 = 0 Then 1 Else 𝑥 ⋅ (Si 𝑥 − 1 = 0 Then 1 Else (𝑥 − 1) ⋅ Ω(𝑥 − 1) EndIf
= If 𝑥 = 0 Then 1 Else 𝑥 ⋅ (Si 𝑥 = 1 Then 1 Else Ω EndIf) EndIf
= If 𝑥 = 0 Then 1 Else (Si 𝑥 = 1 Then 1 Else Ω EndIf) EndIf

(Ω) = 𝜏((Ω))𝜏3 𝜏2

(Ω) = If 𝑥 = 0 Then 1 Else 𝑥 ⋅ (Ω)(𝑥 − 1) EndIf𝜏3 𝜏2

(Ω) = If 𝑥 = 0 Then 1 Else 𝑥 ⋅ (Si 𝑥 − 1 = 0 Then 1 Else 𝑥 ⋅ (Si 𝑥 − 1 = 1 Then 1 Else Ω EndIf) EndIf) EndIf𝜏3

(Ω) = If 𝑥 = 0 Then 1 Else 𝑥 ⋅ (Si 𝑥 = 1 Then 1 Else (Si 𝑥 = 2 Then 1 Else Ω EndIf) EndIf) EndIf𝜏3

(Ω) = If 𝑥 = 0 Then 1 Else (Si 𝑥 = 1 Then 1 Else (Si 𝑥 = 2 Then 2 ⋅ 1 Else Ω EndIf) EndIf) EndIf𝜏3

(Ω) = 𝜏((Ω))𝜏4 𝜏3

(Ω) = If 𝑥 = 0 Then 1 Else 𝑥 ⋅ (Ω)(𝑥 − 1) EndIf𝜏3 𝜏3

(Ω) = If 𝑥 = 0 Then 1 Else 𝑥 ⋅ (Si 𝑥 − 1 = 0 Then 1 Else (Si 𝑥 − 1 = 1 Then 1 Else (Si 𝑥 − 1 = 2 Then 2 ⋅ 1 Else Ω EndIf) EndIf) EndIf) EndIf𝜏3

(Ω) = If 𝑥 = 0 Then 1 Else 𝑥 ⋅ (Si 𝑥 = 1 Then 1 Else (Si 𝑥 = 2 Then 1 Else (Si 𝑥 = 3 Then 2 ⋅ 1 Else Ω EndIf) EndIf) EndIf) EndIf𝜏3

(Ω) = If 𝑥 = 0 Then 1 Else (Si 𝑥 = 1 Then 1 Else (Si 𝑥 = 2 Then 2 ⋅ 1 Else (Si 𝑥 = 3 Then 3 ⋅ 2 ⋅ 1 Else Ω EndIf) EndIf) EndIf) EndIf𝜏3

(Ω)𝜏𝑛

(Ω) = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ ... ⋅ 𝑛 = 𝑛 !𝜏𝑛

• By using the characteristics of the λ-Calculus and the fixed point theorem to prove programs written in a functional language.

Version 0.1
Last updated 2024-11-21 00:09:08 +0100

