
1

Ordonnancement: Modélisation et Algorithmes

1. Fonction de l’ordonnancement

L’ordonnancement est l’un des problèmes centraux, il appartient aux trois fonctions

techniques de l’industrie: études, production et maintenance. Sa mission est de :

 Prévoir la chronologie du déroulement des tâches.

 Optimiser l’utilisation des moyens nécessaires, et les rendre disponibles.

 Lancer les travaux au moment choisi.

 Contrôler l’avancement et la fin des tâches, et prendre en compte les écarts

entre prévisions et réalisations.

L’ordonnancement passe par trois étapes :

 La planification : qui vise à déterminer les différentes opérations à réaliser, les

dates correspondantes, et les moyens matériels et humains à y affecter.

 L’exécution : qui consiste à la mise en œuvre des différentes opérations

définies dans la phase de planification.

 Le contrôle : qui consiste à effectuer une comparaison entre planification et

exécution, soit au niveau des coûts, soit au niveau des dates de réalisation.

1.1. Théorie de l’ordonnancement

La théorie de l’ordonnancement est une branche de la recherche opérationnelle qui

s’intéresse au calcul de dates d’exécution optimales de tâches. Pour cela, il est très

souvent nécessaire d’affecter en même temps les ressources nécessaires à l’exécution de

ces tâches.

1.2. Problème d’ordonnancement

Un problème d’ordonnancement consiste à organiser dans le temps la réalisation de

tâches, compte tenu de contraintes temporelles (délais, contraintes d’enchaînement) et de

contraintes portant sur la disponibilité des ressources requises. Cette programmation se

fait alors en vue d’optimiser un ou plusieurs critères tels que la minimisation de la date

d’achèvement de la réalisation, ou l’optimisation de l’utilisation des ressources sous

2

contraintes de durée. Les problèmes d’ordonnancement apparaissent, par exemples, en

informatique (les tâches sont alors des processus informatiques et les ressources sont des

processeurs et de la mémoire) ou dans l’industrie (dans un atelier de production, les

tâches sont des traitements à appliquer à des pièces et les ressources sont constituée par

les machines et le personnel).

1.3. Ordonnancement

Un ordonnancement constitue une solution au problème d’ordonnancement. Il est

défini par le planning d’exécution des tâches (« ordre » et « calendrier ») et d’allocation

des ressources et vise à satisfaire un ou plusieurs objectifs. Un ordonnancement est très

souvent représenté par un diagramme de Gantt.

2. Concepts de base de l'ordonnancement

 Les principaux éléments qui caractérisent un problème d’ordonnancement sont : les

tâches, les ressources, les différentes contraintes s’y rapportent et les objectifs.

2.1. Tâche

 Une tâche est une entité élémentaire localisée dans le temps par une date de début et/ou de

fin, dont la réalisation nécessite une durée, et qui consomme un moyen (utilise une ou

plusieurs ressources) selon une certaine intensité.

Deux types de tâches sont distingués:

 les tâches morcelables (préemptives) qui peuvent être exécutées en plusieurs fois

facilitant ainsi la résolution de certains problèmes,

 les tâches non morcelables (indivisibles) qui sont exécutées en une seule fois et ne

peuvent pas être interrompues avant qu’elles soient complètement terminées.

Chaque tâche i qui correspond à la réalisation d’un job j est alors caractérisée par :

 - ti j k : sa date de début d’exécution sur la machine k.

 - r ijk : sa date de disponibilité ou date de début au plus tôt sur la machine k.

 - pi j k : son temps d’exécution ou sa durée opératoire sur la machine k.

 - Cijk : sa date de fin d’exécution sur la machine k.

 - dijk : sa date de fin au plus tard sur la machine k.

http://fr.wikipedia.org/wiki/Ordonnancement_d'atelier#Concepts_de_base_de_l.27ordonnancement

3

Ainsi, pour qu’un ordonnancement soit réalisable, la condition suivante est nécessaire :

  i  I , ri j k  t i j k  C i j k  d i j k Où I représente l’ensemble de tâches à

ordonnancer.

2.2. Les ressources

 La ressource est un moyen technique ou humain, disponible en quantité limitée,

utilisé pour réaliser une tâche. Plusieurs types de ressources sont à distinguer:

 Les ressources renouvelables, qui, après avoir été allouées à une tâche,

redeviennent disponibles et qui peuvent être réutilisées (machines, personnel,

etc.).

 Les ressources consommables, qui, après avoir été allouées à une tâche, ne sont

plus disponibles, et sont donc épuisées (argent, matières premières, etc.).

 Les ressources partageables qui peuvent être partagées entre plusieurs tâches.

Ces ressources peuvent être classées d’une autre manière :

 Les ressources de type disjonctif qui ne peuvent exécuter qu’une opération

 ou une tâche à la fois.

 Les ressources de type cumulatif qui peuvent exécuter plusieurs opérations

simultanément.

2.3. Les contraintes

 Les contraintes représentent les conditions à respecter lors de la construction de

l’ordonnancement pour qu’il soit réalisable. Elles rendent les problèmes d’ordonnancement

plus difficiles car il faut les respecter lors de la résolution de ces problèmes.

On distingue :

 des contraintes temporelles

 les contraintes de temps alloué, issues généralement d'impératifs de gestion et

relatives aux dates limites des tâches (délais de livraisons, disponibilité des

approvisionnements) ou à la durée totale d'un projet.

 les contraintes de cohérence technologique, ou contraintes de gammes, qui

 décrivent des relations d'ordre relatif entre les différentes tâches.

4

 des contraintes de ressources

 les contraintes d'utilisation de ressources qui expriment la nature et la quantité

des moyens utilisés par les tâches, ainsi que les caractéristiques d'utilisation

de ces moyens.

 les contraintes de disponibilité des ressources qui précisent la nature et la quantité

des moyens disponibles au cours du temps. Toutes ces contraintes peuvent être

formalisées sur la base des distances entre débuts de tâches ou potentiels.

2.4. Les objectifs

Dans la résolution d'un problème d’ordonnancement on peut choisir entre deux grands

types de stratégies, visant respectivement à l'optimalité des solutions, ou plus simplement à

leur admissibilité.

L'approche par optimisation suppose que les solutions candidates à un problème puissent

être ordonnées de manière rationnelle selon un ou plusieurs critères d'évaluation numériques,

construits sur la base d'indicateurs de performances. On cherchera donc à minimiser ou

maximiser de tels critères.

 liés au temps :

 le temps total d'exécution ou le temps moyen d'achèvement d'un ensemble de

tâches

 le stock d'en-cours de traitement

 différents retards (maximum, moyen, somme, nombre, etc.) ou avances par

rapport aux dates limites fixées.

 liés aux ressources :

 la quantité totale ou pondérée de ressources nécessaires pour réaliser un

ensemble de tâches

 la charge de chaque ressource ;

 une énergie ou un débit ;

 coûts de lancement, de production, de transport, etc., mais aussi aux revenus, aux

retours d'investissements.

http://fr.wikipedia.org/wiki/Optimisation_(mathÃ©matiques)
http://fr.wikipedia.org/wiki/Temps

5

3. Différents problème d’ordonnancement

 Les problèmes d’ordonnancement se divisent en deux grandes catégories selon le nombre

d’opérations nécessaires à la réalisation de chaque travail:

 La première catégorie :

 Machine unique

 Machines dédiées

 Machines parallèles

 la deuxième catégorie : problème d’atelier

 Ateliers à cheminement unique (Flow Shop)

 Ateliers à cheminements multiples (Job Shop)

 les ateliers à cheminement libre (open shop)

 3.1. La première catégorie

 La première catégorie se subdivise à tour en plusieurs types de problèmes, en fonction de

la configuration de machines considérée :

 Machine Unique : Dans ce cas, l’ensemble des tâches à réaliser est fait par une seule

machine. Les tâches alors sont composées d’une seule opération qui nécessite la même

machine.

 Machine dédiée : Plusieurs machines, chacun étant spécialisée pour l’exécution de

certains travaux.

 Machines parallèles : Dans ce cas, on dispose d’un ensemble de machines

identiques pour réaliser les travaux. Les travaux se composent d’une seule opération

et un travail exige une seule machine. L’ordonnancement s’effectue en deux phases :

la première phase consiste à affecter les travaux aux machines et la deuxième phase

consiste à établir la séquence de réalisation sur chaque machine.

3.2 .La deuxième catégorie (problème d’atelier)

 Regroupe les problèmes pour lesquels chaque travail nécessite plusieurs opérations. Ils

sont généralement spécifiés par la donnée de m machines et de n travaux composés chacun

de m opérations ; chaque opération devant être exécutée par une machine différente. Trois

6

sous-classes de problèmes sont alors différenciées selon le mode de passage des opérations

sur les différentes machines, à savoir :

 Flow Shop

Les ateliers de type « flow-shop » pour lequel la ligne de fabrication est constituée de

plusieurs machines en série ; toutes les opérations de toutes les tâches passent par

toutes les machines dans le même et unique ordre .Ce type d’atelier est dit à

cheminement unique, cas d’une chaîne de fabrication). L’un des objectifs principaux

de flow-shop est de trouver une séquence des tâches en main qui respecte un

ensemble de contraintes et qui minimise le temps total de production.

 Job Shop

Dans les ateliers de type « job-shop », les opérations sont réalisées selon un ordre

total bien déterminé, variant selon la tâche à exécuter. Ce type d’atelier est

nommé aussi atelier à cheminements multiples, (cas de l’atelier de production

 traitant plusieurs produits).

 Open shop

Chaque produit à traiter doit subir un ensemble d’opérations sur un ensemble de

machines, mais dans un ordre totalement libre.

7

 4. Modélisation des problèmes d’ordonnancement

4.1. Classification

 Pour présenter un problème d'ordonnancement, nous adoptons la notation proposée par

Graham et al. permettant de distinguer les classes des problèmes d'ordonnancement. Ce

formalisme contient trois champs séparés par des « slashs » (α / β/ δ).

 Le premier champ α

Il représente l'environnement des ressources et est spécifié par concaténation de deux

éléments : α =α1α2

 Le paramètre α1 représente la configuration de machines utilisées:

 (α1 ∈ {∅, P, Q, R, F, O, J})

 α1 = ∅ : une seule machine est utilisée.

 α1 = P : plusieurs machines identiques sont disponibles. (i.e. les ressources

sont composées de machines travaillant suivant la même cadence, disposées en

parallèle et pouvant exécuter tous les travaux).

 α1 = Q : plusieurs machines parallèles uniformes sont disponibles. (i.e. les

cadences des machines sont différentes (selon un facteur de proportionnalité),

mais restent indépendantes des travaux.

 α1 = R : plusieurs machines indépendantes non liées sont disponibles. (i.e. les

cadences des machines sont différentes et dépendent des travaux exécutés).

 α1 = F : plusieurs machines dédiées fonctionnant en flow-shop. (i.e. les travaux

sont décomposés en plusieurs opérations qui doivent être exécutées sur

l'ensemble des machines, celles-ci étant disposées en série pour un même

routage).

8

 α1 = O : plusieurs machines dédiées fonctionnant en open-shop. (i.e. les

travaux sont décomposés en plusieurs opérations qui doivent être exécutées sur

l'ensemble des machines sans restriction sur le routage des travaux).

 α1 = J : plusieurs machines dédiées fonctionnant en job-shop. (i.e. les travaux

sont décomposés en plusieurs opérations qui doivent être exécutées sur

l'ensemble des machines, mais peuvent avoir des routages différents).

 Le paramètre α2 permet de préciser le nombre de machines composant l’atelier; il

peut être égal à vide ou à un entier m. Dans le premier cas, cela signifie que le

nombre de machines est quelconque. Dans le deuxième cas, cela signifie que l’atelier

est composé de m machines (m > 0).

 Le deuxième champ β

Il représente les contraintes et les caractéristiques du système. Il est formé de huit sous

champs, β = β1β2β3β4β5β6β7.

 β1 ∈ {∅, pmtn} permet de préciser le mode d’exécution. β1 = ∅ indique le mode

sans préemption et β1 = pmtn indique le mode avec préemption.

 β2 ∈ {∅, prec, tree, chain} précise un type de précédence entre travaux, c’est-à-

dire le fait qu'un travail doit être exécuté avant un autre. La valeur ∅ indique que les

travaux sont indépendants. Les valeurs prec, tree, chain indiquent l’existence,

respectivement, d’une relation de précédence générale, d’une relation de précédence

sous forme d’arbre et d’une relation de précédence sous forme de chaîne.

 β3 ∈ {∅, rj} décrit les dates de disponibilité (i.e. dates au plus tôt) des différents

travaux dans le système. Ces dates peuvent être identiques et égales à zéro pour tous

les travaux (β4 = ∅) ou différentes suivant les travaux (β4 = rj).

9

 β4 ∈ {∅, pj = p, ≤ p ≤ p } détaille les durées opératoires des différents travaux.

Ces durées peuvent être fonction de la machine. Différentes restrictions peuvent

également être considérées pour simplifier certains problèmes.

 β4 = ∅ : les travaux ont des durées opératoires arbitraires.

 β4 = pj = p : tous les travaux ont une durée opératoire égale à p.

 β4 = ≤ p ≤ p : les durées opératoires des travaux sont comprises entre et

p .

 β5 ∈ {∅, dj, } indique les éventuelles dates d'échéance (ou dates au plus tard) des

travaux.

 β5 = ∅ : les travaux n'ont pas de date d'échéance.

 β5 = dj : chaque travail a une date d'échéance de fin d’exécution sous peine de

pénalisation.

 β5 = : chaque travail a une date d'échéance impérative (date limite) qu'il faut

absolument respecter.

 β6 ∈ {∅, s, si, sij, nwt} permet de spécifier des contraintes temporelles sur les

enchaînements de travaux. Ces contraintes sont très souvent introduites afin de mieux

représenter les problèmes réels. Il est parfois nécessaire de considérer un temps

improductif entre l'exécution de deux travaux différents sur une même machine pour

représenter les changements et les réglages d'outils. Ces temps de changement peuvent

être constants (s), fonction du nouveau travail (si) ou bien fonction de l'enchaînement

des deux travaux (sij).

Pour le cas β6 = nwt : toutes les opérations d'un travail soient exécutées sans temps

d'attente (no-wait).

 Enfin, le paramètre β7 ∈ {∅, Mj} indique, dans le cas de machines parallèles, des

restrictions sur la polyvalence des machines. L'ensemble Mj représente l'ensemble des

machines capables de réaliser le travail Jj. Lorsque β7 est vide, toutes les machines

sont capables d'exécuter tous les travaux.

10

 Le troisième champ 

Il spécifie le critère à optimiser. Les critères les plus utilisés sont

  = Cmax : makespan. Date de sortie du système (le dernier travail).

 (Cmax = maxj Cj où Cj est la date de fin d'exécution du travail Jj).

 =Σ Cj (ou C*) : somme des dates de fin d'exécution. La date Cj peut être pondérée et

un deuxième critère pourra être défini =Σwj Cj, où wj est le poids associé au travail Jj.

  = Lmax : décalage temporel maximal. Ce critère mesure la plus grande violation des

dates d'échéance (Lmax = maxj {Lj = Cj - dj} où dj est la date de fin au plus tard).

 = Σ Uj : somme du nombre de travaux terminés avec retard (Uj = 1 si le travail Jj est

terminé après son échéance au plus tard). Un Uj peut être pondéré et un deuxième

critère pourra être = Σ wj Uj, où wj est le poids associé au travail Jj.

 Un sous-ensemble d’ordonnancements est dit dominant par rapport à un critère si ce sous-

ensemble contient au moins un ordonnancement optimal relativement à ce critère.

4.2. Modélisation

 La modélisation, est en général, une étape très importante dans la résolution d’un

problème d’ordonnancement. C’est une écriture simplifiée de toutes les données du problème

permettant d’en traduire tous les détails pour mieux représenter la réalité des choses.

Il existe trois méthodes pour modéliser l’ordonnancement : le diagramme de Gantt, la

méthode MPM (Méthode des potentiels Métra), le PERT (Program Research Technic).

4.2.1. Le Diagramme de Gantt

 C’est une méthode très ancienne puisque datant de 1918 et pourtant encore très répandue

mais sous des formes et sur des applications résolument modernes. Consiste à déterminer la

meilleure manière de positionner les différentes tâches d’un projet à exécuter.

 Principe

11

 Ce type de diagramme a été mis au point par un américain Henry Gantt. On représente au

sein d’un tableau, en ligne les différentes tâches et en colonne les unités de temps

(exprimées en mois, semaines, jours, heures…)

La durée d’exécution d’une tâche est matérialisée par un trait au sein du diagramme.

 Réalisation.

 Les différentes étapes de réalisation d’un diagramme de Gantt sont les suivantes :

Première étape : On détermine les différentes tâches (ou opérations) à réaliser et leur durée.

Deuxième étape : on définit les relations d’antériorité entre tâches.

Troisième étape : on représente d’abord les tâches n’ayant aucune antériorité, puis les tâches

dont les tâches antérieures ont déjà été représentées, et ainsi de suite…

Quatrième étape : on représente par un trait parallèle en pointillé à la tâche planifiée la

progression réelle du travail.

 Exemple

Temps

Tâche
1 2 3 4 5 6 7 8 9 10 11 12 13

A

B

C

D

E

Remarques

 Chaque colonne représente une unité de temps.

 Les durées d’exécution prévues des tâches sont représentées par un trait épais.

 (4 unités de temps pour C).

 Les contraintes de succession se lisent immédiatement.

o Les tâches B et C succèdent à la tâche A.

o D succède à B.

o E succède à D.

12

 On peut alors déterminer le chemin critique : qui est formé d’une succession de

tâches, sur le chemin le plus long en terme de durées. Il est appelé chemin critique

car tout retard pris sur l’une des tâches de ce chemin, entraîne du retard dans

l’achèvement du projet. (Chemin critique : A, B, D, E).

Avantages

 Permet de déterminer la date de réalisation d’un projet.

 Permet d’identifier les marges existantes sur certaines tâches (avec une date de

début au plus tôt et une date au plus tard).

 La date au plus tard de début d’une tâche, la date à ne pas dépasser sans retarder

l’ensemble du projet.

Inconvénient

 Ne résoudre pas tous les problèmes, en particulier si l’on doit planifier des fabrications qui

viennent en concurrence pour l’utilisation de certaines ressources.

4.2.2. La méthode des potentiels métra (MPM)

 La méthode des potentiels métra (MPM) a été développée par une équipe de chercheurs

français.

Principe.

 Les tâches sont représentées par des sommets et les contraintes de succession par des

arcs.

 Chaque tâche est renseignée par sa date début au plus tôt et sa date début au plus tard

 A chaque arc est associée une valeur numérique, qui représente la durée de l’opération.

 Exemple

Tâche Durée Tâches antérieures

A 2

B 4

C 4 A

D 5 A, B

E 6 C,D

13

Remarques

 La date de début au plus tôt d’une tâche est obtenue en cumulant la durée des tâches qui

précèdent sur la séquence la plus longue.

 On initialise le sommet DEBUT avec une date au plus tôt = 0.

 Pour tous les prédécesseurs i de j :

Date au plus tôt de la tache j= Max (date au plus tôt de i + Durée i)

 Les dates au plus tard : dates à laquelle doivent être exécutées les tâches sans remettre en

cause la durée optimale de fin du projet.

 On initialise à l’étape terminale, le dernier sommet par la date au plus tard =date au plus

tôt.

 Pour tous les successeurs j de i :

Date au plus tard i = Min (Date au plus tard de j – durée i)

On peut alors déterminer le chemin critique : succession de tâches sur le chemin le plus long

au sens des durées. Pour toutes les tâches du chemin critique, les dates au plus tôt et au plus

tard coïncident. Chemin critique : B, D, E.

 La marge totale sur une tâche est le retard que l’on peut prendre dans la réalisation de

cette tâche sans retarder l’ensemble du projet. Elle est obtenue, en faisant pour chaque

tâche, la différence entre la date au plus tard de début d’une tâche et la date au plus tôt.

 La marge libre sur une tâche est le retard que l’on peut prendre dans la réalisation d’une

tâche sans retarder la date de début au plus tôt de toute autre tâche qui suit.

0 0

Début

15 15

Fin

 2 0 2

A

2 5

C

0 0

B

4 4

D

9 9

E

 0

 0

 2

 4

 4

 5

 6

Date au

plus tard
Date au

plus tôt

14

Pour tous les successeurs j de i ; Marge Libre de i = Min (Tj – Ti – Di j) où Tj est la

date au plus tôt de la tâche qui suit la tâche considérée, Ti est la date de début au plus tôt

de la tâche i et Di j est la durée qui sépare la tâche i de la tache j.

4.2.3. La méthode P.E.R.T (Program Evaluation and Research Task)

 Le graphe PERT permet de visualiser la dépendance des tâches et de procéder à leur

ordonnancement. On utilise un graphe de dépendances. Pour chaque tâche, on indique une

date de début et de fin au plus tôt et au plus tard. Le diagramme permet de déterminer le

chemin critique qui conditionne la durée minimale du projet.

Principe

Dans un graphe PERT :

 Chaque tâche est représentée par un arc, auquel on associe un chiffre entre parenthèses

qui représente la durée de la tâche.

 Entre les arcs figurent des cercles appelés « sommets » ou « événement » qui

marquent l’aboutissement d’une ou plusieurs tâches. Ces cercles sont numérotés afin

de suivre l’ordre de succession des divers évènements.

Réalisation

Pour construire un graphe PERT, on utilise la méthode de décomposition en niveaux :

 On détermine les tâches sans antécédents, qui constituent le niveau 1.

 On identifie ensuite les tâches dont les antécédents sont exclusivement du niveau 1.

Ces tâches constituent le niveau 2, et ainsi de suite…

Exemple

 0 0

 1

 9 9

 4

 4 4

 3

 15 15

 5

 2 4

 2

E (6)

D (5)

X (0)

A (2) C (4)

B (4)

Date au

plus tard

Date au

plus tôt

15

Remarques

 Il a été nécessaire d’introduire une tâche fictive de durée égale à 0, pour représenter la

relation d’antériorité entre A et D

 Le cumul des tâches composant la séquence la plus longue (B, D, E) permet de déterminer

la date au plus tôt de réalisation du projet. Cette succession de tâches constituent le

chemin critique.

 Date au plus tôt : on initialise la date au plus tôt du premier sommet à 0 :

T1 = 0 : Désigne la date au plus tôt du sommet 1.

Pour tous les prédécesseurs i de j :

 T j = Max (Ti + Durée i)

 Date au plus tard : on initialise la date au plus tard du dernier sommet avec sa date

au plus tôt.

 = (

 désigne la date au plus tard du sommet n, désigne la date au plus tôt

du sommet n).

Pour tous les successeurs j de i :

 Marge totale :

T i, j : durée de la tâche entre les sommets i et j.

 Marge Libre :

 Sur le chemin critique, les marges totales des différentes tâches sont nulles.

 Pour toute tache, sa marge libre est toujours inférieure ou égale à sa marge totale.

5. Etude de quelques problèmes

Le but de cette partie est de présenter quelques résultats de base sur les problèmes à une et m

machines. Ces problèmes peuvent sembler très spécifiques. Pourtant leur résolution est à la

base de problèmes plus généraux, en particulier, quand il apparaît qu'une ressource est

dominante.

16

5.1 Ordonnancement sur une machine

 Problème 1 \ \ Cmax

Cmax = max Ci

Objectif : Minimiser la durée totale de l’ordonnancement.

Toute séquence nous donne une solution optimale.

 Problème 1 \ \ ∑Ci

 Objectif : Minimiser la durée totale de l’ordonnancement.

 Attente moyenne des clients dans une file.

 Stocks d’encours devant la ressource.

Supposons qu’on a 4 taches à ordonnancer A, B, C, D de durées respectivement PA,

PB, PC et PA. Prenons la séquence ABCD

Alors on aura :

CA = PA

CB = PA + PB

CC = PA + PB + PC

CD = PA + PB + PC + PD

CA + CB + CC + CD = 4PA + 3PB + 2PC + PD

Donc La règle SPT (Shortest Processing Time) séquençant les taches par durée

opératoire croissante est une séquence qui vérifie la dominance, par conséquent elle

est optimale pour 1 \ \ ∑Ci

 Problème 1 \ ri \ Cmax

Toutes les taches ne sont pas disponibles dès le début de l’ordonnancement mais au

fur et à mesure.

 Date ri (release date) d’arrivée / disponibilité.

 Des temps d’inactivité (idle time) peuvent paraitre sur la ressource.

 Exemple

 A B C D

pi 5 2 1 3

ri 0 9 1 8

17

0 5 9 11 12 15

A B C D

 La séquence ABCD donne Cmax =15

0 5 6 8 11 13

A C D B

 La séquence ACDB donne Cmax =13

La meilleure séquence c’est celle qui minimise le temps total d’inactivité. Ce

problème est résolu en temps polynomial en ordonnant les opérations par ordre

croissant sur les dates de disponibilité

 Problème 1 \ ri \ ∑Ci

 Ce problème est NP-difficile,

Algorithme de Liste

 Priorité sur les taches : liste L

 séquençage glouton des taches : Si la ressources est libre, séquencer la première

tache disponible de la liste.

 Principe glouton : ne pas laisser la ressource inoccupée si les taches sont

disponibles

 La liste sert à arbitrer lorsque plusieurs taches sont disponibles en même temps

Exemple

 A B C D

pi 5 2 1 3

ri 0 9 1 8

Prenons une liste de priorité SPT, L = CBDA. En appliquant l’algorithme de liste on

aura ∑Ci = 35.

0 5 6 8 11 13

A C D B

 Remarquons que la séquence CADB donne ∑Ci = 33

0 1 2 7 8 11 13

 C A D B

18

Remarques

 Pour l’exemple donn quelque soit la liste de priorit le r sultat de

l’algorithme reste le même. Donc il n’arrive jamais à une solution optimale.

 Dans la séquence optimale il peut être nécessaire de laisser la ressource inoccupée

même si des taches sont disponibles

 Tout algorithme de liste peut être arbitrairement mauvais

Modèle mathématique : Une formulation PLNE

Variable de décision :

 Ci : date de fin de la i
ème

 tache

Objectif : min

Contraintes :

 XOR

Cette contrainte disjonctive peut être remplacée par :

Variable de décision :

Big M

Heuristique

Relaxation préemptive : Relaxation du problème en autorisant la préemption

autrement dit, une tache peut être exécutée en plusieurs fois (en morceaux).

La règle SRPT (Shortest Remaining Processing Time) ordonnançant à chaque instant

la tache disponible de plus petit temps restant est optimale pour 1 \ ri, pmtn \ ∑Ci.

Exemple

 A B C D E

pi 10 4 1 1 2

ri 0 2 4 6 8

19

En ordonnançant les taches selon la règle SRPT on aura le résultat suivant :

0 2 4 5 7 8 10 18

A B C B D E A

 Donc ∑Ci = 48. Cette valeur représente une borne inférieure au problème 1 \ ri \ ∑Ci.

Algorithme de Stein

C’est un algorithme approché pour résoudre le problème 1 \ ri \ ∑Ci. Son principe

consiste à ordonnancer les taches dans l’ordre de leurs dates de fin Ci dans

l’ordonnancement du problème 1 \ ri, pmtn \ ∑Ci selon la règle SRPT.

Pour l’exemple, la séquence obtenue est : CBDEA

0 4 5 9 10 12 22

 C B D E A

 Donc ∑Ci = 58

 Problème 1 \ di \ ∑Ui

Algorithme de Hogdson

L’objectif est de minimiser le nombre de taches terminant en retard. On commence par

le tri des taches selon les di croissant, suivi par la construction d’un ensemble de taches

terminant sans retard. A chaque itération, on ajoute une tache, si cette tache fait du

retard, on supprime de cet ensemble, la tache la plus longue.

Début

 Ordonnancer les taches selon les di croissant

 A ← ∅ /* A est l’ensemble des taches terminant sans retards */

 Pour i = 1 à n faire

 Si P(A) + pi ≤ di Alors /* */

 A ← A + { i }

 Sinon

 Soit

 A ← A + { i } - { j }

 Finsi

 Finpour

Fin

20

 Problème 1 \ prec \ Cmax

 Tout algorithme de liste est optimal pour ce problème

 Problème 1 \ prec, di \ Tmax

Algorithme de Lawler

L’objectif est de minimiser le plus grand retard effectué en présence des contraintes de

précédence. Cet algorithme procède comme suit :

Debut

 /* t : représente la date fin de la tache qu’on va placer à chaque itération */

1- Partons de la fin de l’ordonnancement (t = ∑pi).

2- Placer la tache i sans successeurs (non ordonnancé) qui minimise Ti.

3- t = t – pi

4- S’il existe une tache non ordonnancé alors Aller à l’étape 2.

Fin

 Exemple

 A B C D E

pi 2 3 1 2 4

di 8 7 3 6 11

 A C

 E

 D

 B

0 2 3 6 8 12

A C B D E

∑pi = 12, le résultat de l’algorithme est la séquence ACBDE qui est optimale

avec Tmax = 2 pour D

21

5.2 Ordonnancement sur des machines parallèles

 Problème Pm \ \ Cmax

 Ce problème est NP-difficile même si on a seulement deux machines.

 Modèle mathématique : Une formulation PLNE

 Problème purement d’affectation des taches aux ressources

 Variables d’affectation :

 Contrainte d’affectation :

 /* Une tache est affectée à exactement une machine */

 Date de fin sur la machine k :

 /* Somme des temps d’exécution des taches affectées à Mk */

 Objectif : min

 Problème Pm \ pmtn \ Cmax

Algorithme de Mac-Naughton

C’est un algorithme qui commence d’abord par le calcul d’une borne inférieure :

 car la durée de l’ordonnancement est supérieure

à la durée d’une tâche et à la somme des durées des tâches divisée par le nombre de

machines (durée moyenne).

Une fois la borne LB est calculée, il passe à la phase d’affectation des taches une par

une en commençant par la première machine. Si l’affectation de la tache courante

provoque le dépassement de LB, cette tache sera interrompue et le reste de celle-ci

sera affecté au début de la machine suivante et ainsi de suite jusqu’à l’affectation de

la totalité des tâches. L’algorithme de Mac-Naughton construit donc un

ordonnancement de durée égale à LB.

22

Algorithme Mac-Naughton

Début

 Poser t = 0 ; k = 1 ;

 Pour i = 1 à n

 Si t + pi  LB alors

 Affecter la tache i sur la machine k entre les instants t et t + pi

 t  t + pi

 Sinon

 Affecter la tache i sur la machine k entre les instants t et LB et sur la

machine k+1 entre les instants 0 et pi – LB + t

 k  k + 1

 t  pi – LB + t

 Fin Si

 Fin Pour.

Fin.

 Problème Pm \prec \ Cmax

Pour chercher une solution approchée à ce problème on peut utiliser un algorithme de

liste utilisant une liste de priorité tout en respectant les contraintes de précédence.

Algorithmes de liste

 Soit L = (J1, J2, …, Jn) une liste des n jobs.

 t := 0 ; NSJ := J ; /* L’ensemble de tous les jobs */

 Tantque NSJ ≠ ∅ Faire

 Soit PR(t) l’ensemble des jobs de NSJ prêts à l’instant t ;

 Soit ML(t) l’ensemble des machines libres à partir de t ;

 k := Min{Card(PR(t), Card(ML(t))} ;

 Exécuter les k premiers jobs de PR(t) dans L sur k machines de ML(t) ;

 Supprimer les k jobs choisis de NSJ ;

 t := Min {u > t / une machine est libre à partir de u}

 Fintantque

23

Exemple

m=3 ;

p1 = p2 = p4 = p5 = p6 = 1 ; p3 = p7 = p8 = 2.

Soit L une liste quelconque.

 1 4 7

 2 5 8

 3 6

 Ordonnancement S(L) Ordonnancement optimal

 0 1 2 3 5

M1 1 5 6 7

M2 2 4 8

M3 3

Deux propriétés fondamentales des ordonnancements de liste.

Propriété 1

Soit S(L) un ordonnancement de liste.

Si une machine est oisive sur un intervalle de temps [t, t+Ԑ] (Ԑ > 0), alors pour

tout job Ji ordonnancé après t, l’un des ascendants de Ji est en cours

d’exécution sur [t, t+ Ԑ].

Propriété 2

Soit S(L) un ordonnancement de liste d’un énoncé E de Pm / prec / Cmax.

Soit C
*
 le délai minimum d’un ordonnancement de E.

Soit Cmax(S(L)) le délai de S(L).

On a : Cmax(S(L)) ≤ (2-1/m) C
*
.

5.3 Problèmes d’ateliers

 Problème F2 \ \ Cmax

Les produits passent successivement sur une machine outil A et poste de finition B.

Objectifs : Finir au plus tôt les produits.

 0 1 2 4

M1 1 5 7

M2 2 4 8

M3 6 3

24

Algorithme de Johnson

Partitionner les jobs en deux sous ensembles :

 A = {i / ai ≤ bi} /* Jobs plus couts sur A */

 B = {i / ai > bi} /* Jobs plus couts sur B */

Ordonnancer :

 Les jobs de A par ai croissant

 Les jobs de B par bi décroissant

Exemple

 a b c d e

A 2 2 1 3 5

B 1 2 4 3 3

 A = {b, c, d}  A = c, b, d

 B = {a, e}  B = e, a

 Donc = c, b, d, e, a

 Le makespan = 15

 Problème F3 \ \ Cmax

Les produits passent successivement sur les machines A, B et C.

Objectifs : Finir au plus tôt les produits.

 Ce problème est NP-difficile sauf si la machine B (étage intermédiaire) est dominée,

c'est-à-dire max {bi} ≤ min {ai} ou max {bi} ≤ min {ci}.

 Si cette condition est vérifiée la solution optimale est obtenue par l’algorithme de

Johnson légèrement modifié :

 Créer deux machines virtuelles MV1 et MV2 :

 Les temps opératoires sur MV1 sont {ai + bi}

 Les temps opératoires sur MV2 sont {bi + ci}

 Appliquer Johnson sur MV1 et MV2

 L’ordre trouvé est optimal sur les trois machines

 0 1 3 5 6 7 10 11 13 14 15

A c b d e a

B c b d e a

25

 Problème J2 \ \ Cmax

Chaque job possède son propre ordre de passage et a au plus deux opérations.

Objectifs : Finir au plus tôt les produits.

Algorithme de Jackson

Partitionner les jobs en quatre sous ensembles :

 AB : Jobs passant d’abord sur la machine A.

 BA : Jobs passant d’abord sur la machine B.

 A : Jobs passant uniquement sur la machine A.

 B : Jobs passant uniquement sur la machine B.

Ordonnance les jobs selon les séquences :

 Machine A : {AB}(Johnson) {A} et {BA}

 Machine B : {BA}(Johnson) {B} et {AB}

Exemple

Les jobs {a, b} sont exécutés dans l’ordre A, B.

Les jobs {d, e} sont exécutés dans l’ordre B, A.

 a b c d e

A 3 4 1 3 1

B 1 5 1 2

AB = {a, b}

 AB = {b, a}

BA = {d, e}

 AB = {d, e}

A = {a}.

B = .

Donc on va Ordonnancer les jobs selon les séquences :

 = b, a, c, d, e

 = d, e, b, a

 0 2 3 4 7 8 9 10 12

A b a c d e

B d e b a

 Le makespan = 12

