2023/2024

Exercise 01: Suppose that $(u_n)_{n\in\mathbb{N}}$ converges to l and $u_n\geq 0$ for all n. Then $(\sqrt{u_n})_{n\in\mathbb{N}}$ converges to \sqrt{l} .

Exercise 02: Let $(u_n)_{n\in\mathbb{N}}$ be a bounded and decreasing sequence.

Prove that $(u_n)_{n\in\mathbb{N}}$ is convergent and that the greatest lower bounds of the set $\{u_n, n\in\mathbb{N}\}$ is the limit of $(u_n)_{n\in\mathbb{N}}$.

Exercise 03:

1- Using the mathematical definition of the convergence, prove that:

$$\lim_{n \to +\infty} \frac{1}{n^2 + 1} = 0 : \lim_{n \to +\infty} \frac{2^n - 1}{2^{n-1}} = 2 : \lim_{n \to +\infty} \frac{3n + 1}{2n + 3} = \frac{3}{2} : \lim_{n \to +\infty} (1 - n) = -\infty.$$

2- Study the nature of the sequences below whose general terms are given by:

$$\begin{split} &\forall n \in \mathbb{N}^* \colon u_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2}. \\ &\forall n \in \mathbb{N}^* \colon v_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}. \\ &\forall n \in \mathbb{N} \colon w_n = \frac{1+3+9+\dots+3^n}{3^{n+1}}. \end{split}$$

Exercise 04: Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of real numbers defined as :

$$u_1 = \frac{1}{2}$$
, and $u_{n+1} = u_n^2 + \frac{3}{16}$, for all $n \in \mathbb{N}^*$.

- 1- Prove that : $\forall n \in \mathbb{N}^* : \frac{1}{4} \le u_n \le \frac{3}{4}$.
- 2- Show by induction that $(u_n)_{n\in\mathbb{N}}$ is a decreasing sequence.
- 3- Deduce the convergence of this sequence and compute it limit.

Exercise 05: Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of real numbers defined as :

$$u_0=1$$
, and $u_{n+1}=rac{2u_n}{2+3u_n}$, for all $n\in\mathbb{N}$.

- 1- Calculate u_1 and u_2 .
- 2- Is the sequence $(u_n)_{n\in\mathbb{N}}$ arithmetic? (Justify your response).
- 3- We assume that for every natural number of \mathbb{N} such us: $u_n \neq 0$, we define the sequence $(v_n)_{n\in\mathbb{N}}$ as follows: $\forall n\in\mathbb{N}: v_n=\frac{1}{u_n}$.
- 4- Prove that the sequence $(v_n)_{n\in\mathbb{N}}$ is arithmetic, then determine its first term and its base.
- 5- Find the value of v_n in terms of n, then deduce the value of u_n in terms of n.
- 6- Study the variations of the sequence $(u_n)_{n\in\mathbb{N}}$ (i.e. the monotonicity of $(u_n)_{n\in\mathbb{N}}$).
- 7- Prove that: $\forall n \in \mathbb{N}: 0 < u_n \leq 1$.

Exercise 06: Study the nature of the sequences below whose general terms are given by :

$$u_{n+1} = \frac{1}{u_n}$$
, $u_0 \neq 0$ is given, $v_n = \frac{2^n}{n!}$ and $w_{n+1} = \left(1 + \frac{(-1)^n}{n+2}\right) w_n$, w_0 is given.

Indication: Prove that: $u_{2k} = u_0$ and that $u_{2k+1} = \frac{1}{u_0}$.

Prove that: $w_{2k} = w_0$ and that $w_{2k+1} = \frac{2k+3}{2k+2}w_0$.

Exercise 07: Let (u_n) and (v_n) be two sequences defined as :

$$u_0=1$$
, and $u_{n+1}=\frac{u_n}{1+u_n}$, and $v_n=\frac{1}{u_n}$, for all $n\in\mathbb{N}$.

- 1- Calculate u_1 and v_0 .
- 2- Prove that (v_n) is arithmetic, then determine its first term and its base.
- 3- Write v_n in terms of n, then deduce the value of u_n in terms of n.
- 4- Calculate $S_n = \sum_{k=0}^n v_k = v_0 + v_1 + \dots + v_n$.

Exercise 08: Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of real numbers defined as :

$$u_0 = 5$$
, and $3u_{n+1} = u_n + 4$, for all $n \in \mathbb{N}$.

- 1- Calculate u_1 and u_2 .
- 2- Prove that : $\forall n \in \mathbb{N}$: $u_n \geq 2$.
- 3- Show that (u_n) is decreasing.

- 4- Conclude that (u_n) is convergent and calculate its limit.
- 5- Put : $v_n = u_n 2$, $\forall n \in \mathbb{N}$.
 - a. Prove that: (v_n) is a geometric sequence, then determine its first term and its base.
 - b. Conclude the value of v_n in terms of n.

6- Let:
$$T_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$$
 and

$$S_n = \sum_{k=0}^n v_k = v_0 + v_1 + \dots + v_n.$$

Find the expression of S_n , deduce then the value of T_n in terms of n.

Exercise 09: Let (u_n) be a numerical sequence defined as: $\forall n \in \mathbb{N}^*$: $u_n = \frac{2^n}{n^2}$.

- 1- Calculate u_1 , u_2 , u_3 , u_4 and u_5 .
- 2- Is the sequence $(u_n)_{n\in\mathbb{N}}$ monotonic?
- 3- Solve in \mathbb{N} inequality : $n^2 2n 1 \ge 0$.
- 4- Study the variation sens of the sequence $(u_n)_{n\in\mathbb{N}}$ starting from order 3.
- 5- Calculate u_{181} and u_{182} , then derive the natural number n_0 that satisfies that: $u_{n_0} \geq 10^{50}$.
- 6- Prove that : $\forall n \ge n_0 : u_n \ge 10^{50}$.

Exercise 10: Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two numerical sequences defined as: $\forall n\in\mathbb{N}: u_n=\sum_{k=0}^n\frac{1}{k!}$, $v_n=u_n+\frac{1}{n!}$.

- 1- Prove that $(u_n)_{n\in\mathbb{N}}$ is strictly increasing and that $(v_n)_{n\in\mathbb{N}}$ is strictly decreasing starting from a certain order n.
- 2- Conclude that $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ converge to the same limit l.
- 3- Prove that this limit is a an irrational limit $(l \notin \mathbb{Q})$.

Exercise 11: Let $(u_n)_{n\in\mathbb{N}}$ be a numerical sequence defined as

$$\forall n \in \mathbb{N}^*: u_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n}.$$

- 1- Prove that the extracted sequences (u_{2n}) and (u_{2n+1}) are adjacent.
- 2- Conclude that (u_n) is convergent.

Exercise 12: Using Cauchy's criterion, study the nature of the following sequences, all of which are defined on \mathbb{N}^* .

$$u_n = \sum_{k=1}^n \frac{1}{k}$$
, $v_n = \cos \frac{1}{n}$, $w_n = \sum_{k=1}^n \frac{\sin k}{k}$