2023/2024

Exercise 01: Let $f: \mathbb{R} \to \mathbb{R}$ be the function given by :

$$f(x) = \begin{cases} x^2 + a & \text{if } x > 2\\ ax - 1 & \text{if } x \le 2 \end{cases}$$

Find the value of a such that f is continuous.

Exercise 02: Prove, using the definition, that each of the following function is continuous on the given domain:

- 1- f(x) = ax + b, $a, b \in \mathbb{R}$, $a \neq 0$, on \mathbb{R} .
- 2- $g(x) = \sqrt{x}$, on $[0, +\infty[$.
- 3- $h(x) = \frac{1}{x}$, on \mathbb{R}^* .

Exercise 03: Let $f, g: [0,1] \to \mathbb{R}$ be continuous functions and define

$$h(x) = \begin{cases} f(x) & \text{, if } x \in \mathbb{Q} \cap [0,1], \\ g(x) & \text{, if } x \in \mathbb{Q}^c \cap [0,1]. \end{cases}$$

- a- Prove that if f(a) = g(a), for some $a \in [0,1]$, then h is continuous at a.
- b- N.A: Find all the points on [0,1] at which the function h is continuous such that

$$h(x) = \begin{cases} x & \text{, if } x \in \mathbb{Q} \cap [0,1], \\ 1 - x & \text{, if } x \in \mathbb{Q}^c \cap [0,1]. \end{cases}$$

Exercise 04: Prove the extension by continuity of the following functions:

$$f(x) = \begin{cases} x^2 - 1 & \text{, if } x < 2\\ \frac{3}{2}x & \text{, if } x > 2 \end{cases}, \quad g(x) = \frac{1}{1 + e^{\frac{1}{x-1}}}, \quad h(x) = \frac{\tan ax}{\sin bx}, a, b \in \mathbb{R}^*.$$

Exercise 05: 1- Prove, using the definition, that if $f, g: I \to \mathbb{R}$ are continuous at $x_0 \in I$, then the function f - g is continuous at x_0 .

2- Deduce by absurd reasoning that, if a function h is not continuous at point $x_0 \in I$, then the function h-g is not continuous at x_0 .

Exercise 06: 1- Let f, g be two functions continuous on [a, b]. Suppose f(a) < g(a) and f(b) > g(b). Prove that there exists $x_0 \in]a, b[$ such that $f(x_0) = g(x_0)$.

2- Prove that the equation $e^x = -x$ has at least one solution in \mathbb{R} .

Exercise 07: Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be given by $f(x) = \frac{x^2}{1+x^2}$.

Prove that f is uniformly continuous on \mathbb{R} .

Exercise 08: Let E be an open subset of \mathbb{R} and let f be defined on E.

- 1- If f is differentiable at $x_0 \in E$, then f is continuous at this point.
- 2- Prove that the absolute value function is continuous at 0, but it is not differentiable at this point.
- 3- What we conclude?

Exercise 09: Let $f, g: [a, b] \to \mathbb{R}$ be two continuous functions, differentiable on [a, b].

1- Show that there exists c in a, b such that:

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

2- Assume that f(a) = g(a) = 0, and $\lim_{x \to a} \frac{f'(x)}{g'(x)} = l$. Prove that $\lim_{x \to a} \frac{f(x)}{g(x)} = l$.

Exercise 10: Compute the following limits by using l'Hôpital's Rule:
1)
$$\lim_{x\to 0} \left(\frac{1+x}{x} - \frac{1}{\ln(1+x)}\right)$$
, 2) $\lim_{x\to 0} \frac{sh\ x + \sin x - 2x}{ch\ x + \cos x - 2}$.

Exercise 11: Prove the following inequality using the Mean Value Theorem.

$$\forall x > y > 0: \frac{x - y}{x} < \ln x - \ln y < \frac{x - y}{y}.$$

Conclude that:

$$\forall x > 1: \frac{x-1}{x} < \ln x < x - 1$$

 $\forall x > 1: \frac{x-1}{x} < \ln x < x-1.$ **Exercise 12:** Compute the third derivative of the following function in two different ways:

$$f(x) = \frac{1}{1 - x^2}, g(x) = e^{-x} sh x.$$

Exercise 13: Are the following functions differentiable?

The the following functions differentiable?
$$f(x) = \begin{cases} x^2 e^{-x^2} & \text{, if } |x| \le 1 \\ 1 & \text{, if } |x| > 1 \end{cases}, \quad g(x) = \begin{cases} x^2 + 2 & \text{, if } x \ne 2 \\ 6 & \text{, if } x = 2 \end{cases}$$

$$and \quad h(x) = \begin{cases} x \sin \frac{1}{x} & \text{, if } x \ne 0 \\ 0 & \text{, if } x = 0 \end{cases}$$