University of Jijel

Department of Physics

Functions of a complex variable

TD session one

Exercise 1: Express in the form x + iy:

$$z_1 = 1 + i + i(2 - 3i)$$
. $z_2 = (3 + 2i)(2 + i)$. $z_3 = \frac{1}{1 - 2i}$. $z_4 = \frac{1 + 3i}{2 - i}$. $z_5 = \frac{2i}{1 + i} + \frac{1 - i}{2i}$.

Exercise 2: Express in trigonometric form:

$$z_1 = -8 + \frac{4}{i} + \frac{25}{3 - 4i}$$
. $z_2 = \frac{(1 - i)(\sqrt{3} + i)}{(1 + i)(\sqrt{3} - i)}$.

Exercise 3: Solve the following equations

$$z^2 = 2i$$
. $z^4 = -16$. $z^n = 1$.

Exercise 4: Let z, z_1 , z_2 be complex numbers and let \bar{z} be the conjugate of z. Prove that

- **1)** $|z| \ge 0$ and |z| = 0 if and only if z = 0.
- $2) \ z = \overline{z} \Longleftrightarrow z \in \mathbb{R}.$
- 3) $|z| = \sqrt{z.\bar{z}}$.
- **4)** $|z| = |\overline{z}|$.
- **5)** $|z_1.z_2| = |z_1||z_2|$ and $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$, $z_2 \neq 0$.
- **6)** $|z_1 + z_2| \le |z_1| + |z_2|$.
- 7) $||z_1| |z_2|| \le |z_1 z_2|$.
- 8) $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$, $\forall z \in \mathbb{C}^*$.

Exercise 5: By using the triangle inequality, prove that

1)
$$|z^3 + 3z - 1| \le 15$$
, $\forall z \in \mathbb{C}$, $|z| = 2$.

2)
$$|z^2 + iz + 2| \ge 6$$
, $\forall z \in \mathbb{C}$, $|z| = 4$.

3)
$$0 \le \left| \frac{z-1}{z^2+2} \right| \le 2$$
, $\forall z \in \mathbb{C}$, $|z| = 1$.

Exercise 6: Shade the following region and determine whether they are domain.

1)
$$D_1 = \{ z \in \mathbb{C}, \ 1 < |z - 1| < \sqrt{3} \}.$$

2)
$$D_2 = \left\{ z \in \mathbb{C}, \frac{1}{2} < \left| z - \frac{1}{2} \right| < 1 \right\} \cup \left\{ z \in \mathbb{C}, \frac{1}{2} < \left| z + \frac{1}{2} \right| < 1 \right\}.$$

3)
$$D_3 = \{z \in \mathbb{C}, |z| < |z - 1|\}.$$

4)
$$D_4 = \{z \in \mathbb{C}, |z-1| < 1\} \cup \{z \in \mathbb{C}, |z-3| < 1\}.$$

Exercise 7: Describe the domain of definition for each of the following functions

1)
$$f(z) = z^2 - iz + 5 + 4i$$
. 2) $f(z) = \frac{z}{z - i}$. 3) $f(z) = \frac{z}{z + \overline{z}}$. 4) $f(z) = \frac{1}{4 - |z|^2}$.

Exercise 8:

- 1) Find the real part and the imaginary part of the function defined by $f(z) = z^3 + 2z + 1$.
- **2)** Express in term of *z* the function defined by

$$f(z) = x^2 - y^2 + i(2x - 2xy), \ \forall z = x + iy \in \mathbb{C}.$$

Exercise 9: Prove that if a function has a limit, then this limit is unique.

Exercise 10: Find each of the following limits

1)
$$\lim_{z \to 2i} \frac{z^3 + 5}{iz}$$
, 2) $\lim_{z \to i} \frac{z^2 + 1}{z - i}$, 3) $\lim_{z \to \infty} \frac{4z^2 + 1}{z^2 + z + 3 + i}$, 4) $\lim_{z \to \infty} \frac{z^4 - i}{z^3 + 2z + 4}$.

Exercise 11: Prove that $\lim_{z\to 0} \frac{\overline{z}^2}{z} = 0$.

Exercise 12: Let $f, g : \mathbb{C} \longrightarrow \mathbb{C}$ be two complex functions and let $z_0 \in \mathbb{C}$. Prove that if f is continuous at z_0 and g is continuous at $w_0 = f(z_0)$, then the function $g \circ f$ is continuous at z_0 .

Exercise 13: Discuss the continuity of the function $f: \mathbb{C} \longrightarrow \mathbb{C}$ defined by

$$f(z) = \begin{cases} \frac{z^3 - 1}{z - 1} & \text{if } |z| \neq 1, \\ 3 & \text{if } |z| = 1 \end{cases}$$

2

at $z_0 = 1$, $z_1 = -1$, $z_2 = -i$ and $z_3 = i$.

Exercise 14: For each of the following functions, determine f'(z).

1)
$$f(z) = \frac{z+2}{3z-1}, \ \forall z \in \mathbb{C} \setminus \left\{ \frac{1}{3} \right\}.$$

2)
$$f(z) = (1 + z^2)^3$$
, $\forall z \in \mathbb{C}$.

Exercise 15: Determine the coefficients a, b and c so that the Cauchy-Riemann equations are satisfied for the function f defined by

$$f(z) = ay^3 + ix^3 + xy(bx + icy), \ \forall z = x + iy \in \mathbb{C}.$$

Exercise 16: Prove that the Cauchy-Riemann equations can be written, in polar coordinates as

$$\frac{\partial u}{\partial r}(r,\theta) = \frac{1}{r} \frac{\partial v}{\partial \theta}(r,\theta), \quad \frac{1}{r} \frac{\partial u}{\partial \theta}(r,\theta) = -\frac{\partial v}{\partial r}(r,\theta).$$

Where $x = r \cos \theta$ and $y = r \sin \theta$.

Exercise 17: Let $u: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a harmonic function in D. Prove that

- 1) If $v : D \longrightarrow \mathbb{R}$ is a conjugate of u, then -u is also a conjugate of v.
- **2)** If $v_1: D \longrightarrow \mathbb{R}$ and $v_2: D \longrightarrow \mathbb{R}$ are conjugates of u, then v_1 and v_2 differ by a real constant.
- 3) If $v : D \longrightarrow \mathbb{R}$ is a conjugate of u, then v is also a conjugate of u + c, where c is a real constant.