PROCESS ENGINEERING DEPARTMENT

#### Heat and Mass Transfer

Exercices: Heat flux - Thermal flux density and resistance - Fourier's law - Newton's law and Stefan Boltzmann's law

# TD Series No. 01 Heat and mass transfer

#### Fourier's law - Newton's law and Stefan Boltzmann's law

## **Exercise 01 (Heat flow)**

A cylindrical electrical resistor (D=0.4cm, L=1.5cm) on a printed circuit board dissipates a power of 0.6 W. Assuming that heat is transferred uniformly across all surfaces.

Determine: (a) the amount of heat dissipated by this resistor over a 24-hour period, (b) the heat flux, (c) the fraction of heat dissipated by the top and bottom surfaces.

## Solution

**Assumptions**: Heat is transferred uniformly across all surfaces.

## Analysis:

(a) the heat dissipated by this resistor over a 24-hour period is:

$$Q_{total} = \dot{Q}_{total} \Delta t = (0.6 \text{ W})(24 \text{ h}) = 14.4 \text{ Wh} = 51.84 \text{ kJ} (1 \text{ W.h} = 3600 \text{ W.s} = 3.6 \text{ kJ})$$

a) The heat flux at the resistor surface is:

$$S_{total} = 2\frac{\pi D^2}{4} + \pi DL = 2\frac{\pi (0.4 \text{ cm})^2}{4} + \pi (0.4 \text{ cm})(1.5 \text{ cm}) = 0.251 + 1.885 = 2.136 \text{ cm}^2$$

$$\dot{q} = \frac{\dot{Q}_{total}}{S_{total}} = \frac{0.60 \text{ W}}{2.136 \text{ cm}^2} = \mathbf{0.2809 \text{ W/cm}^2}$$

(c) **Assuming** the heat transfer coefficient is uniform, heat transfer is proportional to surface area. Then, the fraction of heat dissipated by the top and bottom surfaces of the resistor becomes:

$$\frac{Q_{\text{haut-bas}}}{Q_{\text{total}}} = \frac{S_{\text{haut-bas}}}{S_{\text{total}}} = \frac{0.251}{2.136} = 0.118$$
 or (11.8%)

**Discussion**: Heat transfer from the top and bottom of surfaces is low compared with that from the cylindrical surface. This is the case for walls in the thermal sense.

**Discussion** : Le transfert de chaleur par le haut et le bas des surfaces sont faibles par rapport à celle transféré par la surface cylindrique. C'est le cas des murs au sens thermique du terme.

### Exercise 02 (Flux density and thermal resistance)

A tank contains 3 m³ of hot water at  $Ti=80~^{\circ}C$ . It is perfectly heat-insulated, except for a section with a surface area of S=0.3 m². After  $\Delta t=5$  hours, the water temperature has dropped by 0.6 °C at an ambient temperature of 20°C. Assuming that the heat capacity of the tank is  $10^3~kcal/^{\circ}C$ . Calculate:

- 1. the amount of heat lost in 5 hours,
- 2. heat flux through the lid,
- 3. the heat flux density through the lid,
- 4. thermal resistance of the lid.

#### **Solution**

#### 1. The amount of heat lost in 5 hours is:

$$Q(t = 5h) = ((m.c)_{eau} + (m.c)_{r\'{e}servoir})(T_{eau}(t = 5h) - T_{eau}(t = 0))$$

$$Q(t = 5h) = ((3*10^3*1kcal/°C) + (10^3kcal/°C))(-0.6°C) = -2.4 \cdot 10^3kcal \text{ (Syst\`eme MKH)}$$

$$Q(t = 5h) = -2.4 \cdot 10^3kcal = -2.4 \cdot 10^3*4.185kJ = -10044kJ \text{ (Syst\`eme International)}$$

## 4.186 J/g°C

Water has a specific heat capacity of 4.186 J/g°C, meaning that it requires 4.186 J of energy (1 calorie) to heat a gram by one degree.

The calorie was originally defined as the amount of heat required at a pressure of 1 standard atmosphere to raise the temperature of 1 gram of water 1° Celsius. Since 1925 this calorie has been defined in terms of the joule, the definition since 1948 being that one calorie is equal to approximately 4.2 joules.

Nov 10, 2023

## 2. Calculation of heat flux through the cover (the lid):

$$\phi(t = 5h) = \frac{Q(t = 5h)}{\Delta t} = \frac{-2.4 \cdot 10^3 \, kcal}{5h} = -480 \frac{kcal}{h}$$

$$\phi(t = 5h) = -480 \frac{4185J}{60 * 60s} = -480 * 1.1625 \, W = -558 \, W$$
(SI)

### 3. Calculation of heat flux density through the cover

$$\varphi(t=5h) = \frac{\phi(t=5h)}{S} = \frac{-480 \frac{kcal}{h}}{0.3m^2} = -1600 \frac{kcal}{m^2.h}$$
 (Système MKH)  
$$\varphi(t=5h) = -1600 \frac{kcal}{m^2.h} = -1600 \frac{4185}{3600} \frac{J}{m^2.s} = -1600 * 1.1625 \frac{W}{m^2} = -1860 \frac{W}{m^2}$$
 (SI)

#### 4. lid thermal resistance by electrical thermal analogy:

$$\Delta U = R_{\'{e}lectrique} * I \qquad \Delta T = R_{\'{t}hermique} * \phi \quad \Rightarrow \quad R_{\'{t}hermique} = \frac{\Delta T}{\phi}$$

$$R_{\'{t}hermique} = \frac{\Delta T}{\phi} = \frac{T_{air} - T_{eau} (t = 5h)}{\phi (t = 5h)} = \frac{(20 - (80 - 0.6))^{\circ} C}{-480 \frac{kcal}{h}} = 0.12375 \frac{{}^{\circ} C.h}{kcal} \quad \text{(Système MKH)}$$

$$R_{\'{t}hermique} = 0.12375 \frac{{}^{\circ} C.h}{kcal} = 0.12375 * \frac{{}^{\circ} C.3600.s}{4185.J} = 0.12375 * \frac{1}{1.1625} \frac{{}^{\circ} C}{W} = 0.1064 \frac{{}^{\circ} C}{W} \quad \text{(SI)}$$

#### Exercise 03 (Fourier's law)

Determine the steady-state heat transfer rate per unit area (flux density) through a 4 cm thick slab, assuming it is homogeneous with uniform temperature maintenance on both sides at 38 °C and 21 °C, respectively. The thermal conductivity of its material is 0.19 W.m-1K-1. The temperature profile is assumed to be linear.

#### Solution

we know Fourier's law, which relates heat flux density to temperature gradient:

$$\vec{\varphi} = -\lambda \, \overrightarrow{\text{grad}} T = -\lambda \, \vec{\nabla} T$$

In cartesian coordinates:

$$\overrightarrow{\text{grad}}T = \frac{\partial T}{\partial x} \vec{i} + \frac{\partial T}{\partial y} \vec{j} + \frac{\partial T}{\partial z} \vec{k}$$

In the present case T is a function of x only; then:  $\frac{\partial T}{\partial y} = 0$  et  $\frac{\partial T}{\partial z} = 0$ 

So the flux  $\varphi$  will only take place in the direction of x. So, it is given by  $\phi=-\,\lambda\,\frac{\partial T}{\partial x}$ 

 $\varphi$ : is the amount of heat transferred per unit time per unit area; therefore

$$\varphi = -\lambda \frac{\partial T}{\partial x} = -\lambda \frac{\Delta T}{\Delta x} = -\lambda \frac{T_2 - T_1}{x_2 - x_1} = -0.19 \frac{21 - 38}{0.04} = +80.75 W/m^2$$

#### Exercise 04 (Newton's Law)

The heat transfer coefficient for forced convection of a fluid flowing over a cold surface is 225 W/m².°C for a particular situation. The temperature of the flowing fluid is 120°C and the surface is maintained at 10°C.

• Determine the rate of heat transfer per unit area (flux density) from the fluid to the surface.

#### Solution

Newton's law gives the relationship between the heat transfer coefficient, the temperature of a solid and that of a fluid, and the quantity of heat transferred. It has the form :

$$\vec{\phi} = h S (T_s - T_\infty) \vec{n}$$

 $\vec{n}$ : unit vector perpendicular to the transfer surface.

h: heat transfer coefficient.

Then, the heat flux density is:

$$\varphi = \frac{\phi}{S} = h(T_S - T_{\infty}) = h(T_{cS} - T_f) = 225 \text{ (10-120)=- 24750 W/m}^2$$

The minus sign indicates that heat has been transferred from the fluid to the solid.

## Exercise 05 (Stefan-Boltzmann law)

After sunset, an amount of radiant energy can be captured by a person standing next to a brick wall. The wall surface is heated to 44°C and the emissivity of the brick is 0.92.

• What is the heat flux per unit area of the wall at this temperature?

#### Solution

The Stefan-Boltzmann equation gives the relationship between the temperature of a gray body, the surface area of the body (m²), the Stephan-Boltzmann constant (5.67 10<sup>-8</sup>W m<sup>-2</sup>K<sup>-4</sup>), the emissivity and the heat flux transmitted by radiation. It has the forme:

$$\phi = \varepsilon \sigma S T_S^4$$

The heat flux per unit area (flux density) is therefore :  $\sigma$ = 5.66 . 10<sup>-8</sup> Wm<sup>-2</sup> K<sup>-4</sup> :cnstant of Stefan-Boltzmann

$$\varphi = \frac{\phi}{S} = \varepsilon \sigma$$
.  $T_S^4 = (0.92)(5.6697 * 10^{-8})(44 + 273)^4 = 526.72 W/m^2$ 

Note: Temperature T is the absolute temperature. It is in Kelvin.

Proposed by N. MAHAMDIOUA

