Dr Laib

Analyse lipidique

non-polar	medium polar	highly polar Dr Laib
16:0 ———	16:0	16:0
18:2/18:3 18:1		
18:0	18:0 ——— 18:1 ———	18:0 ———
	18:2	18:1
	18:3 ———	18:2 ———
20:0	20:0 ———	20:0 ——— 18:3

Dr	L	aib

Abbreviation

C10:0

C12:0

C14:0

C16:0

C16:1

C18:0

C18:1- cis (n9)

C18:1- trans (n9)

C18:2 - cis (n6)

C18:2 - trans (n6)

acides gras les plus courants		
Fatty acid	Common Name	Abl
Butanoic acid	Butyric acid	C4:0

Decanoic acid

Dodecanoic acid

Tetradecanoic acid

Hexadecanoic acid

Hexadecenoic acid

Octadecanoic acid

cis-9-Octadecenoic acid

trans-9-Octadecenoic acid

all cis-9,12-Octadecadienoic acid

all trans-9,12-Octadecadienoic acid

Caproic acid

Lauric acid

Myristic acid

Palmitic acid

Stearic acid

Oleic acid

Elaidic acid

Linoleic acid

Linolelaidic acid

Palmitoleic acid

all cis-9,12,15-Octadecatrienoic acid	α-Linolenic acid	C18:3 (n3) $_{DrLaib}$
all cis-6,9,12-Octadecatrienoic acid	γ-Linolenic acid	C18:3 (n6)
Eicosanoic acid	Arachidic acid	C20:0
cis-11-Eicosenoic acid		C20:1 (n9)
all cis-11,14-Eicosadienoic acid		C20:2 (n6)
all cis-11,14,17-Eicosatrienoic acid		C20:3 (n3)
all cis-8,11,14-Eicosatrienoic acid	Dihomogammalinolenic acid	C20:3 (n6)
all cis-5,8,11,14-Eicosatetraenic acid	Arachidonic acid	C20:4 (n6)
all cis 5,8,11,14,17-Eicosapentenoic acid	EPA	C20:5 (n3)
Docosanoic acid	Behenic acid	C22:0
cis-13-Docosenoic acid	Erucic acid	C22:1 (n9)
all cis-7,10,13,16-Docosatetraenoic acid		C22:4 (n6)
all cis 4,7,10,13,16,19-Docosahexenoic acid	DHA	C22:6 (n3)
Tetracosanoic acid	Lignoceric acid	C24:0
cis-15-tetracosenoic acid	Nervonic acid	C24:1 (n9)

Pour la caractérisation de la fraction lipidique, Dr Laib les triglycérides sont hydrolysés (saponifiés) en glycérol et acides gras libres. Bien que les acides gras libres puissent être analysés directement sur des phases stationnaires polaires (colonne HP-FFAP), des données chromatographiques plus robustes et reproductibles sont obtenues si les acides gras sont dérivés en esters méthyliques.

et la méthylation, différentes méthodes sont disponibles.

Ces méthodes sont faciles à utiliser, ne nécessitent pas de réactifs ou d'équipements coûteux.

Après préparation des FAME, ils sont séparés selon le nombre de carbones (nombre d'atomes de carbone dans la chaîne des acides gras,

hors le carbone de l'ester méthylique) et le degré d'insaturation. De plus, la position de la ou des doubles liaisons et la configuration géométrique (cis/trans) sont également des paramètres importants et leur détermination ajoute des informations supplémentaires à la caractérisation de la fraction lipidique dans les aliments.

3 phases stationnaires sont comparées pour la séparation des FAME. La première méthode utilise DB-Wax, une colonne de polyéthylène glycol, dans laquelle les FAME de C4 (acide butyrique) à C24 (acide lignocérique) peuvent être séparés en fonction du nombre de carbones et du degré d'insaturation. Sur ces colonnes, aucune séparation des isomères cis et trans n'est obtenue, et pour les mélanges complexes, comme les huiles de poisson,

certains FAME sont difficiles à séparer. Cependant, la séparation des FAME sur colonnes de polyéthylène glycol est largement utilisée et est appliquée à la caractérisation d'échantillons « classiques », tels que les huiles végétales de maïs, d'olive et de soja. Les graisses animales peuvent également être analysées. Une application importante est l'analyse de l'acide butyrique dans la matière grasse du lait.

La concentration d'acide butyrique dans le lait est un indicateur important de la qualité du lait, et son analyse est donc très importante dans le lait, les produits laitiers et le chocolat. Pour l'analyse d'échantillons complexes, tels que les huiles de poisson, une résolution supplémentaire des FAME est nécessaire et est obtenue à l'aide d'une colonne capillaire recouverte d'une phase stationnaire cyanopropylique, telle qu'un DB-23.

Sur cette colonne, les acides gras hautement insaturés, tels que tous les esters méthyliques de l'acide cis 5, 8, 11, 14, 17-eicosapenténoïque (EPA, C20:5 ω3) et tous les cis 4,7,10,13,16,19. L'ester méthylique de l'acide docosahexénoïque (DHA, C22:6 ω3) est séparé des autres FAME.

Cette analyse est très importante dans le cadre de l'intérêt récent porté à la détermination des acides gras oméga-3.

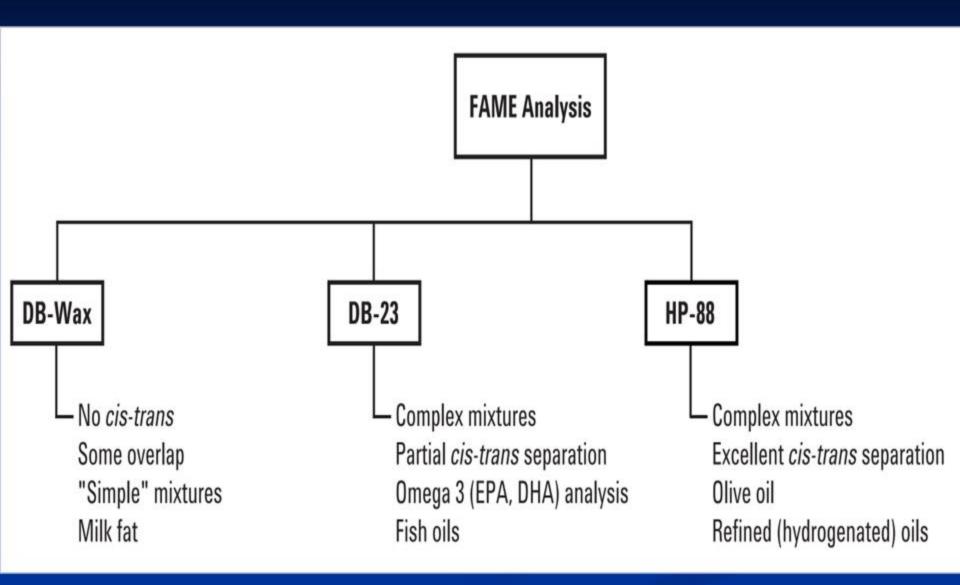
Sur la colonne cyanopropylique, la séparation des isomères cis et trans est également possible. En raison de l'interaction plus forte de l'isomère cis avec le cyano-dipôle, les isomères trans s'éluent avant les isomères cis. De cette manière, la détermination des acides gras trans est également effectuée, mais la polarité de la phase stationnaire n'est pas suffisante pour séparer complètement les mélanges cis-trans complexes.

Pour la séparation d'un mélange FAME complexe contenant une quantité relativement importante d'acides gras trans, une colonne HP-88 hautement polaire est préférée. Sur cette colonne hautement polaire permet d'obtenir une excellente séparation entre les différents isomères cis et trans, cependant, certains acides gras de poids moléculaire plus élevé sont plus difficiles à séparer.Un aperçu des colonnes et de leur domaine d'application est résumé dans la figure 1.

L'ensemble de l'échantillon a été dilué dans 10 ml d'hexane (concentration finale = 0,2 à 0,4 mg/mL par FAME) avant utilisation. Les échantillons d'huile et de graisse peuvent être préparés en utilisant différentes méthodes.

Méthode de préparation des échantillons

Peser un échantillon de 100 mg dans un tube à essai de 20 ml (avec bouchon à vis) ou un flacon de réaction.


Dissoudre l'échantillon dans 10 ml d'hexane. Ajouter 100 μL d'hydroxyde de potassium 2 N dans le méthanol (11,2 g dans 100 ml). Fermez le tube ou le flacon et vortexez pendant 30 s.Centrifuger. Transférez le surnageant clair dans un flacon d'échantillonneur automatique de 2 mL.

Conditions analytiques

(colonne HP-88).

Les analyses ont été effectuées sur un GC Agilent 6890 équipé d'un détecteur à ionisation de flamme (FID). L'injection fractionnée automatisée a été réalisée à l'aide d'un échantillonneur automatique Agilent 7683. La configuration instrumentale et les conditions analytiques sont résumées dans le tableau 2 (colonne DB-Wax), tableau 3 (colonne DB-23) et tableau 4

Dr Laib

1. Colonne DB-Wax

Table 2. DB-Wax Method 1

Instrumentation

Dr Laib

Chromatographic system: Agilent 6890 GC

Inlet : Split/Splitless

Detector: FID or Agilent 5973 MSD

Automatic Sampler : Agilent 7683

Liner: Split liner (p/n 5183-4647)

Column: 30 m x 0.25 mm ID, 0.25 µm DB-Wax (J&W 122-7032)

Experimental Conditions GC-FID

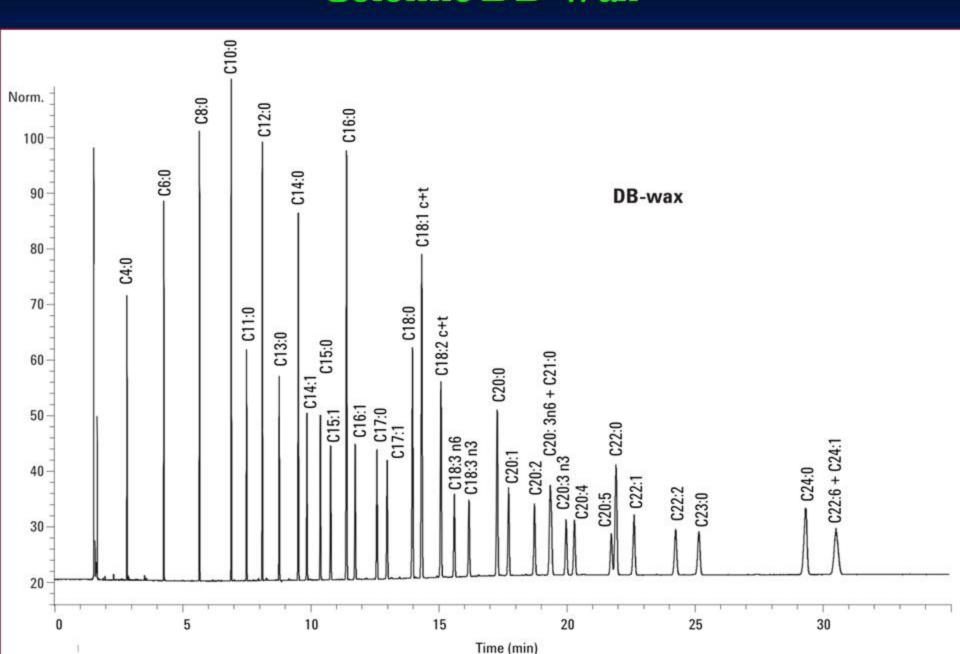
Inlet temperature : 250 °C

Injection volume : $1~\mu L$

Split ratio: 1/50

Carrier gas: Hydrogen

Head pressure: 53 kPa constant pressure (36 cm/s at 50 °C)


Oven temperature: 50 °C, 1 min, 25 °C/min to 200 °C, 3 °C/min to 230 °C, 18 min.

Detector temperature : 280 °C

Detector gases: Hydrogen: 40 mL/min; Air: 450 mL/min; Helium make-up gas: 30

mL/min.

Colonne DB-Wax

1. Colonne DB-23

Instrumentation

Chromatographic system: Agilent 6890 GC

Inlet: Split/Splitless

Detector: FID or Agilent 5973 MSD

Automatic Sampler : Agilent 7683

Liner: Split liner (p/n 5183-4647)

Column: 60 m x 0.25 mm ID, 0.15 µm DB-23 (J&W 122-2361)

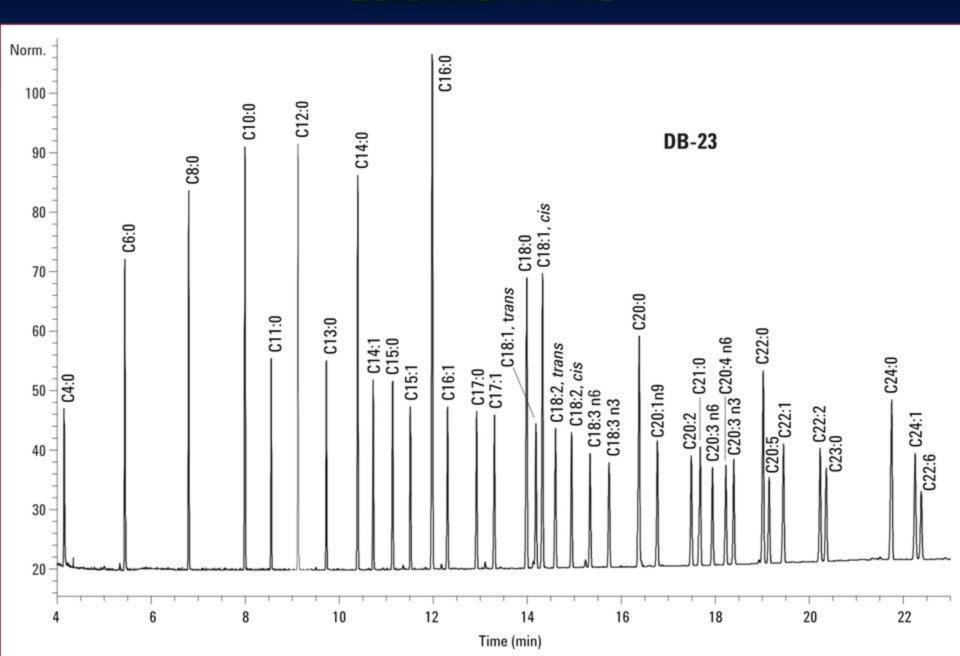
Experimental Conditions GC-FID

Inlet temperature: 250 °C

Injection volume : 1 µL Split ratio: 1/50

Carrier gas: Helium

Head pressure: 230 kPa constant pressure (33 cm/s at 50 °C)


Oven temperature: 50 °C, 1 min, 25 °C/min to 175 °C, 4 °C/min to 230 °C, 5 min.

Detector temperature : 280 °C

Detector gases: Hydrogen: 40 mL/min; Air: 450 mL/min; Helium make-up gas: 30

mL/min.

Colonne DB-23

3. Colonne HP-88

Dr I mh Instrumentation Chromatographic system: Agilent 6890 GC

Detector: FID or Agilent 5973 MSD

Automatic Sampler: Agilent 7683

Table 4. HP-88 Methods 3A and 3B

Liner: Split liner (p/n 5183-4647)

Column A: 100 m x 0.25 mm ID, 0.2 µm HP-88 (J&W 112-88A7)

Column B: 60 m x 0.25 mm ID, 0.2 µm HP-88 (J&W 122-8867) **Experimental Conditions GC-FID**

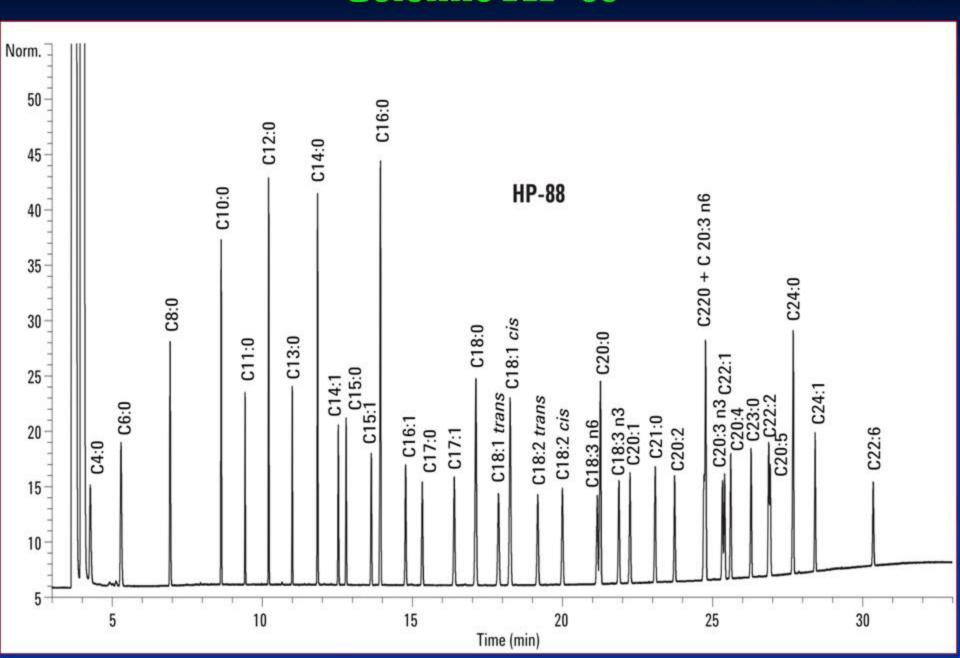
Inlet temperature: 250 °C

Inlet: Split/Splitless

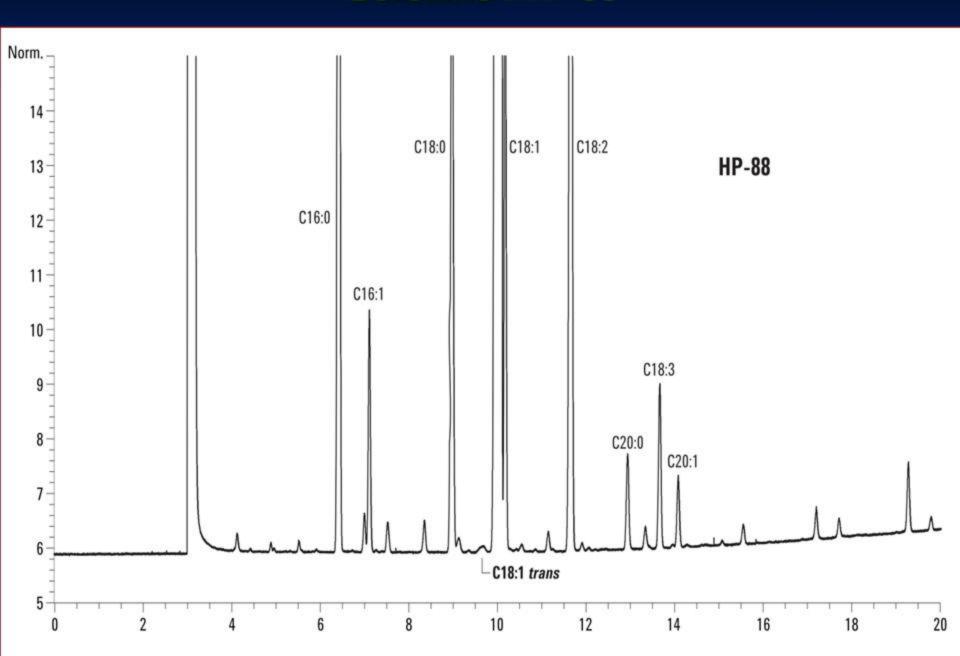
Injection volume: 1 µL Split ratio: 1/50

Carrier gas A: Hydrogen

Carrier gas B: Helium **Head pressure**: 2 mL/min constant flow


Oven temperature A: 120 °C, 1 min, 10 °C/min to 175 °C, 10 min, 5 °C/min to 210

°C, 5 min 5 °C/min to 230 °C, 5 min


Oven temperature B: 175 °C, 10 min, 3 °C/min, 220 °C, 5 min

Detector temperature: 280 °C Detector gases: Hydrogen: 40 mL/min; Air: 450 mL/min; Helium make-up gas: 30

Colonne HP-88

Colonne HP-88

- 3 types de phases stationnaires peuvent être utilisés pour l'analyse des FAME.
- 1. Une colonne DB-Wax est utile pour l'analyse des huiles et graisses comestibles classiques, y compris la détermination de l'acide butyrique dans les matières grasses du lait. Cependant, en utilisant cette colonne, aucune séparation des isomères cis-trans n'est obtenue.

- 2. Une colonne cyanopropylique DB-23 moyennement polaire est excellente pour l'analyse de mélanges complexes d'EMAG, y compris les huiles de poisson, permettant la détermination des acides gras oméga 3 tels que l'EPA et le DHA. Une séparation cis-trans partielle est obtenue.
- 3. Pour la séparation cis-trans la plus exigeante, une colonne HP-88 est recommandée. Cette colonne est également la colonne de choix pour l'analyse QC de l'huile d'olive.