La méthode de branch and bound

1. Introduction

Pour plusieurs problémes, et en particulier les problémes d’optimisation combinatoire,
I’ensemble de leurs solutions est fini et dénombrable. Il est donc possible, en principe,
d’énumérer toutes ces solutions, ensuite prendre celle qui nous arrange. Malheureusement il
n’est guere évident d’effectuer cette énumération a cause du nombre prohibitif de solutions.

La méthode de branch and bound (procédure par séparation et évaluation) est une méthode
générique de résolution des problémes d'optimisation combinatoire. Elle procéde par
énumération de toutes les solutions du probleme en question, mais d’une maniere intelligente.

2. Principe de la méthode

La procédure par séparation et évaluation s’appuie sur la construction d’une arborescence
dont la racine représente 1’ensemble de toutes les solutions du probléeme. Chaque nceud est
muni d’une borne inférieure pour un probléme de minimisation et d’une borne supérieure
pour un probléme de maximisation.

Grace a I'utilisation des bornes, cette méthode se dote de la capacité d’exclure des solutions
partielles t0t. Bien entendu, dans le pire cas, on retombe toujours sur I’exploration explicite
de toutes les solutions du probleme.

Essentiellement la méthode repose sur les points suivants :

e Construction d'une solution heuristique

Toute solution représente une borne supérieure pour un probleme de minimisation et une
borne inférieure pour un probléme de maximisation. Donc une solution initiale de bonne
qualité, peut servir dans I’¢limination de plusieurs branches de 1’arborescence et par
conséquent réduire I’espace de recherche.

e Séparation

Elle permet de construire d’une maniére récursive une arborescence en partitionnant
chaque ensemble en plusieurs sous-ensembles généralement disjoints. La racine représente
I’ensemble de toutes les solutions du probleme. Chaque nceud interne représente une
solution partielle et chaque feuille représente une solution totale.

e Evaluation

L'évaluation consiste & associer pour chaque nceud crée, une borne inférieure (LB) pour un
probléme de minimisation et une borne supérieure (UB) pour un probleme de
maximisation. Inversement on doit avoir pour chaque probleme au moins une borne
supérieure(UB) pour un probléme de minimisation et une borne inférieure (LB) pour un
probléme de maximisation. C’est en confrontant les bornes inférieures avec les bornes
supérieures qu’on arrive a élaguer certaines branches de I’arborescence et donc profiter
d’avantage. En effet, pour un probléme de minimisation si la borne inférieure est supérieure
ou égale a la borne supeérieure, il est impossible de trouver dans cette branche une solution
mieux que la meilleure solution candidate.

https://fr.wikipedia.org/wiki/Optimisation_combinatoire

e Exploration

L'exploration consiste a fixer un protocole donnant I'ordre de visite des différentes branches
comme les méthodes de parcours dans les graphes (I’exploration en profondeur d’abord
(DES) ou en largeur d’abord (BFS)). On peut choisir par exemple de commencer par
explorer les branches les plus prometteuses c'est-a-dire celles qui possedent la borne
inférieure la plus petite pour un probléme de minimisation. D’une fagon générale se sont
des heuristiques qui nous guident vers le choix d’une telle ou telle branche.

3. lllustration de la méthode sur quelques problémes
Le probléme du voyageur de commerce

e Soit un graphe G=(V,E). Un cycle est hamiltonien si et seulement si tous les sommets de G
apparaissent une et seule fois dans ce cycle.

e Soit un graphe G=(V,E) valué. Le probléme du voyageur de commerce consiste a trouver
un cycle hamiltonien dont la somme des poids est minimale.
Soit le graphe suivant :

Borne inférieure

Soit le cycle hamiltonien suivant : vy, Vo, ...,vq, Vae1 = V1 . 1l est facile de monter que son codt
est > EZ?zl(arete — v;; + aréte —v;;) o0 aréte—v;; et aréte—1v;, désignent
respectivement deux arétes adjacentes au sommet i ayant le plus petit poids. Donc cette
expression représente une borne inférieure LB.

Soit E, le sommet de départ.
LBe = —{ (3+4)+(4+4)+(5+5)+(3+6)+(4+7) } = 22.5

Les prochains sommets dans le cycle peuvent étre : A, B, C ou D. Pour chacune des ces
solutions partielles, une borne est calculée.

Par exemple pour le sommet D, LBgepy = %{ (8+3)+(4+4)+(5+5)+(3+6)+(4+8) } = 25. Car
I’aréte (E,D) est sélectionnée

On fait la méme chose pour les autres sommets, donc on aura:
Pour le sommet C, LBy ¢y = 22.5

Pour le sommet A, LBy a3y = 23

Pour le sommet B, LBy gy = 22.5

Parmi ces quatre valeurs, nous allons explorer le sommet ayant la plus petite borne, soit le
sommet C, donc les prochains sommets peuvent étre : {A, B, D}.

Pour le sommet A, LBy, c ap = 23

Pour le sommet B, LByge c sy = 245

Pour le sommet D, LB, c oy = 225

En gardant le méme principe, quand une solution compléte est trouvée, la meilleure solution
candidate est modifiée si nécessaire. Puisque aucune solution initiale n’est proposée, alors La
premiére solution trouvée qui a pour codt 26, représente la meilleure solution candidate.

En continuant 1’exploration, on aura 1’arborescence suivante :

) 4 “~22¢ “N738 % . > !
A (D) (W { D) | !
b o A " e s 3 - A
| ‘ }(X X }f II
!
‘ J \ ,
~NN5 AR AB B By (8 A o N
| u:;' (a) (o] \] (8) J (9} '
y T] [A G
A »n ° A ‘J\. » '.L. » 13 y, ')
% (o) (&) (») (a) ‘ (&)
s k)'f _'X. N 1
A ¥ ,’,jl A £)] (; }‘l
. Tad '
¥ I

Le probléme d’affectation

Soient n personnes & affecter a n taches. Le colt d’affectation de i & latache j est noté
Cij. Le probléme consiste a affecter chaque personne a une seule tache en minimisant le codt
total. Bien entendu, une tache ne peut étre affectée qu’a une seule personne.

Soit la matrice des codts suivante :

Tache 1 | Tache 2 | Tache 3 | Tache 4
Personne a 9 2 7 8
Personne b 6 4 3 7
Personne ¢ 5 8 1 8
Personne d 7 6 9 4

Choisissons au hasard une solution, par exemple on va prendre I’affectation suivante:
(1, b), (2,¢), (3,d) et (4, a).

On aura un co(t total égala 6 + 8 + 9 + 8 = 30.

Cette affection represente la meilleure solution candidate de départ pour I’algorithme.

Borne inférieure
Il est clair que, quelque soit la solution, son colt ne peut pas étre plus petit que la somme des
plus petits éléments de chacune des lignes de la matrice des codts.

Au départ aucune tache n’est affectée.
LB{}:2+3+1+4210.

On va affecter la personne a I’'une des taches suivantes : {1, 2, 3, 4}
LB{(ayl)}:9+3+1+4:17.
LB{(a,Z)}:2+3+ 1+4=10.
LB{(ay3)}: 7T+4+5+4=20.
LB{(a,4)}: 8+3+1+6=18.

10

17 10 20 18
(a, 1) (a, 2) (a, 3) (a, 4)

Selon I’heuristique qui choisit le nceud portant la plus petite borne, I’affectation qu’on va
sélectionner est : la tache 2 a la personne a.

Donc les taches qu’on peut affecter a la personne b sont : {1, 3, 4}

LB{(a,Z),(b,l)}: 2+6+1+4=13.

LB{(ayg)y(byg)}: 2+3+5+4=14

LB{(ayz),(b,4)}: 2+7+1+7=17.

10
/
17 10 20 18
(a, 1) (a, 2) (a, 3) (a, 4)
13 14 17
(b, 1) (b, 3) (b, 41)

Selon I’heuristique qui choisit le noeud portant la borne 10, on sélectionne les affectations
suivantes : (a, 2) et (b, 1).

Donc les taches qu’on peut affecter a la personne c sont : {3, 4}.

LB{@2), (.13 @4y=2+6+1+4=13.

LBt 2. b.1).(c4). @33 =2+6+8+9=25.

En suivant le méme principe, on aura 1’arborescence ci-dessous, aprés élagage des sous arbres
en jaune :

10

/
17 10 20 18
(a, 1) (a, 2) (a, 3) (a, 4)
13 14 17
(b, 1) (b, 3) (b, 4)
13 25
(c,3).(d,4) (c,4),(d,3)

Le probléme du Flow shop a trois machines

Soient a exécuter n tidches sur 3 machines. Chaque tiche doit s’exécuter sur la machine 1,
ensuite sur la machine 2 et enfin sur la machine 3. Le temps d’exécution de la tache i sur la
machine 1 est noté par a;, sur la machine 2 par b; et sur la machine 3 par c¢; . On désire
trouver une permutation d’exécution de ces n taches sur les trois machines de tel maniere a
minimiser le temps total d’accomplissement, appelé makespan.

Prenons 1’exemple suivant de 4 taches sur 3 machines avec les temps d’exécution suivants :

4

Tache 1
Tache 2
Tache 3
Tache 4

Wl
olN|~|o|lo
Njoo|ol| Mo

Si on décide d’exécuter les taches dans ’ordre 4, 3, 1 et 2, alors le temps d’accomplissement
de toutes les taches est égal a 31, comme illustré par le diagramme de Gantt suivant :

0 3 9 10 12 14 22 26 31

D’une fagon générale, soit A = { i(1), i(2),...,i(k) } D’ensemble des premieres tiches déja
exécutées dans cet ordre, et U D’ensemble des tiches non encore exécutées, a un instant
donné. Pour j=1,2,..., Kk, 0N pose a;y, Bik) Vi), les dates de fin de la tache i(k) sur la
machine 1, la machine 2 et la machine 3, respectivement. Ces trois variables sont calculées
récursivement comme suit :

A1) = A1)y Xir) = Aje—1) T Aik)

Biy = @iy + biy, By = Max{ay, Bik-1)} + bick)

Yi) = @iy + biy + Gy Vi = Max{Bigey, Vice-1} + Cick)

Pour calculer une borne inférieure a ce probléme, nous allons considérer trois possibilités les
plus favorables qui peuvent se présenter. Autrement dit, nous allons déterminer le plus court
temps pour exécuter les jobs dans I’ensemble U des taches non encore exécutées.

Il est clair que dans toute solution, I’exécution des taches sur la machine 1 est continuelle.
Considérons la derniére tache, disons i(n) , d’une solution donnée. Le meilleur qui puisse
arriver a cette tache est de ne pas attendre sur la machine 2 et la machine 3. Autrement dit, le
makespan Cnax est alors :

Cmax = @igey + Biev @i + (biny + Citmy)
Par conséquent, si on choisit les plus courts temps d’exécution sur la machine 2 et 3, alors
quelque soit la solution, on aura :

Cmax = @®ik) + Xiey a; + miniey{b; + ¢;}

Similairement, en considérant que la machine 2 est continue dans son exécution. On a alors
Cmax = ﬂi(k) + Yiev bi + Ci(n)

En choisissant le plus court temps d’exécution sur la machine 3, quelque soit la solution, on a
alors: cpax = Bik) + Liev bi + miniey{c;}

Similairement, en considérant que la machine 3 est continue dans son exécution. On obtient la
borne suivante : cipax = Yik) + Zieu Ci

Par conséquent, quelque soit la solution, son makespan ne peut étre mieux que la valeur des
trois expressions ci-dessus. Autrement dit, nous avons bien:

Cmax = Max{@;y + Vicy a; + miniey{b; + ¢}, Bigey + Biew bi + miniey{ci}, Vigo +
YieuCi }-

Passons maintenant a la résolution de notre probleme mais en faisant un parcours en
profondeur d’abord.

Au départ nous avons une borne supérieure égale a 31.

A la racine de I’arbre, aucune tache n’est exécutée, la borne inférieure est donc :

Cmax = Max{a;ge) + Tiey a; + miney{b; + ¢;}, Biey + Liev bi + miniey{c:}, vigo +
Yiepc)= {1249, 23+2, 19} =25,

Autrement dit, aucune solution ne peut avoir un makespan inférieur a 25.

- Si on met la tache 1 en position 1, on obtient: A= {1}, U=4{2, 3, 4}
a1=1, ﬁlzg,)/1=13
borne inférieure = max{ 1+11+9, 9+15+2, 13 +15}=28.

- Si on met la tdche 2 en position 2, on obtient: A = {1, 2}, U={3, 4}
a,=1+2=3, B, = max{3,9} + 4 = 13, y, = max{13,13} + 5 =18
borne inférieure = max{ 3 + 9 +10, 13 +11+2, 18 +10 }=28.

- Si on met la tache 3 en position 3, on obtient: A = {1, 2, 3}, U={4}
a; =3+6=09, B3 = max{9,13} + 2 = 15, ys = max{15,18} + 8 = 26
borne inférieure = max{ 9 +3+11, 15 +9+ 2, 26 +2 }=28..

- Si on met la tdche 4 en position 4, on obtient: A ={1, 2, 3,4}, U={}
a,=9+3=12, By = max{12,15} + 9 = 24, vy, = max{24,26} + 2 = 28

En suivant le méme principe et aprés élagage de certaines branches, on aura I’arborescence Ci-
dessous avec un makespan = 28.

@
A

2Y
in
28 s 29 n. o
}“,. Qn. ’”.)
28 Lo

: 5
'-‘h\ (?IIQ
La figure suivante nous montre ’arborescence compléte avec les branches élaguées en
pointillés.

o
i

| i i
«@ ' ") |
P - R e ‘]Q ~~ o
.‘In F:.. \.:nj X \ Q!ll} f“"\ (u i [‘.")
.'. A) ; / 1 v) ',’ Y ot
BL 8 Gy SO ? \ o & G / t Gy
vel) ' s P 2Ixx | . 1 32y J A /'w Ly o
123 - _— ' : J / y | \ VY, I ¢
: ‘C.‘) S ok) '-3”9 N A "M'l\l Q“\/ P o {h.'h (“' y et A &)
Y \ (h.)) QL). N (Ju)) S .\lhlj & ,,”} l_\u))} £y om
RS L e R 1 . '
o . - ~ - :
' \ y “ o
(02:) (a2 “”9 ;,\.‘\./ [nu) (,,‘) (cm))

Les nceuds créées par des arcs en pointillés sont des nceuds qui n’ont pas été explorés lors de
la création de 1’arborescence car ne pouvant contenir une solution optimales.

Résolution d’un PLNE

Méthode branch and Bound
Prenons I’exemple du programme linéaire suivant :

Max Z = x4 + 4x,
5x; +8x, <40
—2x1+3x, <9

X1,X; EN

(P)

Pour résoudre (P) on va suivre les étapes suivantes :

1) Résoudre (P) a I’aide du simplexe sans tenir compte de la contrainte X;, X2 a valeurs
entiéres. Solution optimale : x = (X1, X2) = (1.55, 4.03). z(x) = 17, 67.
Séparer parrapporta x1:x; <1 ou x; >2.

2) Ajouter la contrainte x; <1 a (P) et résoudre ce programme a I’aide du simplexe, sans
tenir compte de la contrainte x;, X, & valeurs entiéres. Solution optimale x =

(1, 3.67), z(x) = 15.67.

Séparer par rapporta X, : Xz <3 ou X >4.

3) Ajouter a (P) les contraintes x; <1 et x, <3. La solution optimale de ce programme est a
valeurs entieres : x = (1, 3), z(x) = 13.

Evaluer a 13 (c’est-a-dire ne pas poursuivre le branchement si on obtient des solutions
optimales < 13).

4) Ajouter a (P) les contraintes x; < 1 et x; > 4. Ce programme n’a pas de solutions
réalisables.

5) Ajouter a (P) la contrainte x; > 2. La solution optimale x = (2, 3.75), z(x) = 17.

Séparer par rapporta x, : X <3 0u X >4.

6) Ajouter a (P) les contraintes x; >2 et X, <3. Solution optimale x = (3.2, 3), z(x)

=15.2.

Séparer par rapport a x; : X; <3 0u X; >4.

7) Ajouter a (P) les contraintes 2 <x; <3 et X, <3. Solution optimale x =
(3, 3), z(x) =15.
Evaluer a 15.

8) Ajouter a (P) les contraintes x; >4 et x, < 3. Cas sans interét parce que
z(x) = 14 < 15 pour la solution optimale x.

9) Ajouter a (P) les contraintes x; >2 et x, > 4. Pas de solutions réalisables.
La solution optimale a valeurs entieres est donc celle trouvée en 7) :

(x1,x3) = (3,3), avec z* = 15.
L’arborescence qui montre le résultat est la suivante :

1 17.67

1.55 4.03
X1 X322
2 15.67 5 17
1 3.67 2 3.75
X3 X224 X3 X224
3 13 - 6 15.2 9
(1
1 3 [Pas _de soluuions 3.2 3 Pas de solutions
iSdlisable Ld8dlisables
X3 X4
4
7 15 8 14
(2}
3 3

La méthode des coupes.

Max Z = 2x; + x,
x1—4x, <0
3x; +4x, <15
X1, Xy EN

(P)

|:| solution optimale
3 . (a valeurs non entiéres)

@ -oiutions réalisables
a valeurs entiéres

"4

La méthode des coupes consiste a ajouter des contraintes supplémentaires qui permettent
d’approcher les solutions réalisables a valeurs entieres sans les écarter du domaine des
solutions réalisables. Dans I’exemple ci-dessus une telle contrainte est donnée par x; <3 (on
coupe a x; = 3).

Comment trouver de telles contraintes supplémentaires si le programme linéaire contient plus
de deux variables ?

Max Z = cx
Soit (P){ Ax=b ,ouA estune matricem x n,
x=>0 _ _
Posons, pour une base J (avec [J| = m) et une solution réalisable x,

Ax=Alx) + A% =b ob x) = (xj],j €])), x)¢ = (xjjc,j E]C)
Puisque A’ estrégulier, x/ + (ANH)~14 % = (4)1b.
Posons : A = (4))"14/° et b= (4)"1h
Onadonc x/ +Ax’“ =b ol x/ +Zje,dijxjjc =b; Ge)) et A=(ayij=1,..,1n)
Soit [@;;] la partie entiére de a;;, (a@;;) la partie fractionnaire de a;; = [a;;] + (a;;)
Exemples: [3.5] =3 (3.5)=0.5

[-3.5] = —4 (—3.5)=05

Il s’ensuit :
x] + Tjes([a;] + <ai}'))xjjc = [by] + (b;)
x! + Zierlaylx] — (b = (b)) - Tjep@ (1)

Soit x une solution réalisable de (P) a valeurs entieres. L’égalité (1) vaut pour X, le cOté
gauche étant a valeurs entieres. En plus,

x! + Zjej[aij]ifc <x! +3je dij&fc = b; (2)
Comme la partie gauche de (2) est a valeurs entieres,

x] + Sjeslaylx) < [b]
Comme (1) est valable pour toute solution realisable, il s’ensuit que :
(B) — Nje/(@)x] <0
Proposition En ajoutant a (P), la contrainte :

S je(@y)x) > (B)

On n’écarte pas de solutions réalisables a valeurs entieres de |’ensemble des solutions
réalisables.

Remarque. Comme I’exemple suivant montre, on arrive & la solution optimale & valeurs
entiéres en ajoutant, a plusieurs reprises si nécessaire, des contraintes supplémentaires suivant
la proposition ci-dessus.

Exemple.
Max Z = 2x, + x,
—X1 + Xy <0
(P) 5x; + 2x, <18
X1,X5 EN

Pour résoudre (P) on procede par étapes :
1) Reésolution avec le simplexe sans tenir compte de la condition « X3, X, a valeurs
entiéres». Solution optimale x = (18/7, 18/7, 0, 0).

10

Tableau initial
X1 X2 X3 Xz

Cg|Xg|2 |1 |0 |0 B

0 |x3 [-1|1 {1 1|0 |0

0 |x4 |52 (0|1 |18

Zi 0]o]0]0]oO

A, 2 1]0]0

Tableau final
X1 X2 X3 X4

Ceg|Xg|2 |10 0 b
1 |x; |0 |1 |5/7 |1/7 |18/7
2 |xg |1 |0 |-2/7 |17 |18/7
2 2 |1 |17 |37 | 5417
A, 0 |0 |-17]-37

Nouvelle contrainte suivant la proposition ci-dessus :

5 1 4
;X3 +;X4 Z; (Sl)

La contrainte exprimée entermesde xletdex2: x, <2
2) Résolution de (P), (S1) inclus, par le simplexe. Exige le passage par un programme

auxiliaire.
Programme auxiliaire, tableau initial

X1 X2 X3 X4 X5 Y
Cg|Xg|0 |0 |-5/7|-1/7]|1 |0]|Db
0 [xp |0 |1 (57 |17 (0 |0]18/7
0 |x¢ (1 |0 |-2/7|17 |0 |0|18/7
O |Y |0 |0 |57 |17 |-1]1|47
Z 0/0]0 |0 |o0|0]|-47
Aj 0|0 |[-5/7|-1/7|1 |0

La fonction-objectif du programme auxiliaire est donné par :
Minw =y
4 5 1
—;—;Xg —;X4+X5
Programme auxiliaire, tableau final
X1 X2 X3 X4 Xsg

Ce [Xg|0 O [-5/7[-1/7][1 b
0 [x]0|1]o o [1 J2
0 |x |1]|0]|0 |15 |[-2/5]14/5
57 % |0 |0 |1 [1/5 [-7/5]4/5
2 0 |0 [-5/7]-U7[-1 |-ai7
Aj 0ojo]0o |0 |1

Comme w =0, le programme (P)+(S1) posséde une solution realisable. On passe a la
deuxiéme phase.

Tableau final seconde phase
X1 X2 X3 Xa X5

Ce|Xg|2 |1]0]0 0 b

1 |x [0 [1]0]0 1 2

2 [xg |1]0 |0 |15 |-2/5]|14/5
0 |xs [0 |0 |1 |15 |-7/5]4/5
Z; 2 |10 [2/5 |1/5 |38/5
Aj 0 |0 |0 |-2/5]-1/5

Nouvelle contrainte selon la proposition ci-dessus :

Xy x5 22 (S2)
La contrainte exprimée en termes de x1 et de x2 :

x1+x2S4‘

3) Résolution de (P), (S1) et (S2) inclus, exige a nouveau le passage par un programme
auxiliaire.
Seconde phase du simplexe, tableau final

X1 X2 X3 Xa X5 Xg
Ceg|Xg|2 |1]0 10 0|0 b
1 |x2 |0 |1 |0 [-1/3|0 |5/3 |2/3
2 |Xy |10 |0 |1/3 |0 |-2/3|10/3
0 |x3 |0 |0 |1 |23 |0 |-7/3|8/3
0 |xs |0 |0 [0 |[1/3 |1 |-5/3|4/3
Z 2 [1]0 |13 [0 |13 | 223
A 00 |0 |-13]0 |-13

Nouvelle contrainte selon la proposition ci-dessus :
Xy +x62=21 (S3)

La contrainte exprimée en termes de x1, x2 :

2x1 + Xy <7

4) Résolution de (P), (S1), (S2) et (S3) inclus, exige a nouveau le passage par un programme

auxiliaire et meéne, cette fois, a une solution optimale a valeurs entieres, qui est x =t(3, 1, 2, 0,
1, 1, 0).

12

Tableau final de la seconde phase du simplexe

X1 X2 X3 X4 X5 Xg X7

Cg|Xg|2 |1]0]0]0]O0 b
1 |[x |0]1 0|0 |0]2 |-12]1
2 |Xx|1]0 |0 |0 |0 |-1]1/2 |3
0 |[x3 /0|01]0]0[-83]1 2
0 [xs |00 |0 O |1 |-2]12 |1
0 [Xs |0]0 |0 |21 |01 -32]|1
Z; 2|10 |0 |0 |0 |12 |7
Aj 00|00 |00 |-1/2

Donc la solution optimale a valeurs entiéres de (P) est: (x7,x3) = (3,1) avec z* = 7.

Sur la figure ci-aprés on voit que, en ajoutant successivement (S1), (S2) et (S3), on n’écarte
pas de solutions a valeurs entiéres, et on coupe I’ensemble des solutions réalisables de fagon
que la solution optimale a valeurs entiéres apparait comme point extrémal.

contrainte
Jeme nouvelle A
contrainte initiale
92X X -7 \5X,+2X,=18
X‘Z 1 27y contrainte
X i : ;\Itlﬂlex
. : P S
E 2eme nouvelle ! 1 !
4 contrainte : I 1 :
I
Xy+X,=4 | | ! i
i i i i
1 1 1 1
| : | |
| i | |
| ! 1 1
I H I :
| I |
| ! 1 1
3 [N YRRy R . gD Sy, R T Ry g gy [S
| | | |
| : 1 1
i i i i
i ' ’r‘ premiere solution i
! H Al optimale (18/7,18/7) !
| ; | |
I I
! ! deuxieme solution !
! 1 optimale (14/5,2) !
2 | | | ‘
| 1 I 1
| 1 I |
| 1 I 1
| 1 1 1
! : 1 1t lere nouvelle
: 1 : : contrainte
a ! | - X=2
i E | i
1 1 1
T A B S L\
1 ! solution optimale troisieme solution
| i avaleurs | \[W optimale (10/3,213)
| 1 & | |
i H entieres (3,1) ! i
| : | |
1 1] 1
| 1 I |
I 1 1 I
1 1 I 1
| i ' |
. * * - - »
1 2 3 \ 4 X1

