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La méthode de branch and bound 
 

1. Introduction 

Pour plusieurs problèmes, et en particulier les problèmes d’optimisation combinatoire, 

l’ensemble de leurs solutions est fini et dénombrable. Il est donc possible, en principe, 

d’énumérer  toutes  ces solutions,  ensuite prendre celle qui nous arrange. Malheureusement il 

n’est guère évident d’effectuer cette énumération à cause du nombre prohibitif de solutions. 
 

La méthode de branch and bound (procédure par séparation et évaluation) est une méthode 

générique de résolution des problèmes d'optimisation combinatoire. Elle procède par 

énumération de toutes les solutions du problème en question, mais  d’une manière intelligente.  

 

2. Principe de la méthode 

 

La procédure  par séparation  et  évaluation  s’appuie sur la construction d’une arborescence 

dont la racine représente l’ensemble de toutes les solutions du problème. Chaque nœud est 

muni d’une borne inférieure pour un problème de minimisation et d’une borne supérieure 

pour un problème de maximisation.  

Grâce à l’utilisation des bornes, cette méthode se dote de la capacité d’exclure des solutions 

partielles tôt.  Bien entendu, dans le pire cas, on retombe toujours sur l’exploration explicite 

de toutes les solutions du problème.  

Essentiellement la méthode repose sur les points suivants : 

 

 Construction d'une solution heuristique 

 

Toute solution représente une borne supérieure pour un problème de minimisation et une 

borne inférieure pour un problème de maximisation. Donc une solution initiale de bonne 

qualité, peut servir dans l’élimination de plusieurs branches de l’arborescence et par 

conséquent réduire l’espace de recherche. 
 

 Séparation 

 

Elle permet de construire d’une manière récursive une arborescence en  partitionnant 

chaque ensemble en plusieurs sous-ensembles généralement disjoints. La racine représente 

l’ensemble de toutes les solutions du problème. Chaque nœud interne représente une 

solution partielle et chaque feuille représente une solution totale. 
 

 Evaluation 

 

L'évaluation consiste à associer pour chaque nœud crée, une borne inférieure (LB) pour un 

problème de minimisation et une borne supérieure (UB) pour un problème de 

maximisation. Inversement on doit avoir pour chaque problème au moins une borne 

supérieure(UB) pour un problème de minimisation et une borne inférieure (LB) pour un 

problème de maximisation. C’est en confrontant  les bornes  inférieures avec les bornes 

supérieures qu’on arrive à élaguer certaines branches de l’arborescence  et donc profiter 

d’avantage. En effet, pour un problème de minimisation si la borne inférieure est supérieure 

ou égale à la borne supérieure, il est impossible de trouver dans cette branche une solution 

mieux que la meilleure solution candidate. 

 

 
 

https://fr.wikipedia.org/wiki/Optimisation_combinatoire
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 Exploration 

 

L'exploration consiste à fixer un protocole donnant l'ordre de visite des différentes branches 

comme les méthodes de parcours dans les graphes (l’exploration en profondeur d’abord 

(DFS) ou en largeur d’abord (BFS)). On peut choisir par exemple de commencer par 

explorer les branches les plus prometteuses c'est-à-dire celles qui possèdent la borne 

inférieure la plus petite pour un problème de minimisation. D’une façon générale se sont 

des heuristiques qui nous guident vers le choix d’une telle ou telle branche. 

 

3. Illustration de la méthode sur quelques problèmes 

 

 Le problème du voyageur de commerce 

 

 Soit un graphe G=(V,E). Un cycle est hamiltonien si et seulement si tous les sommets de G 

apparaissent une et seule fois dans ce cycle. 

 Soit un graphe G=(V,E) valué. Le problème du voyageur de commerce consiste à trouver 

un cycle hamiltonien dont la somme des poids est minimale. 

      Soit le graphe suivant : 

                                
Borne inférieure 

 

Soit le cycle hamiltonien suivant : v1, v2, …,vn, vn+1 = v1 . Il est facile de monter que son coût 

est ≥ 
 

 
                      

 
     où             et             désignent  

respectivement deux arêtes adjacentes au sommet i ayant le plus petit poids. Donc cette 

expression représente une borne inférieure LB. 

 

Soit E, le sommet de départ. 

LBE  =  
 

 
{ (3+4)+(4+4)+(5+5)+(3+6)+(4+7) } =  22.5 

 

Les prochains sommets dans le cycle peuvent être : A, B, C ou D. Pour chacune des ces 

solutions partielles, une borne est calculée.  

Par exemple pour le sommet D, LB{E,D}  =  
 

 
{ (8+3)+(4+4)+(5+5)+(3+6)+(4+8) } = 25.  Car  

l’arête (E,D) est sélectionnée 

 

On fait la même chose pour les autres sommets, donc on aura: 

Pour le sommet C,    LB{E, C}  =  22.5 

Pour le sommet A,    LB{E, A}  =  23 

Pour le sommet B,    LB{E, B}  =  22.5 
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Parmi ces quatre valeurs, nous allons explorer le sommet ayant la plus petite borne, soit le 

sommet C, donc les prochains sommets peuvent être : {A, B, D}. 

Pour le sommet A,    LB{E, C, A}  =  23 

Pour le sommet B,    LB{E, C, B}  =  24.5 

Pour le sommet D,    LB{E, C, D}  =  22.5 

 

En gardant le même principe, quand une solution complète est trouvée, la meilleure solution 

candidate est modifiée si nécessaire.  Puisque aucune solution initiale n’est proposée, alors La 

première solution trouvée qui a pour coût 26, représente la meilleure solution candidate. 

En continuant l’exploration, on aura l’arborescence suivante : 

 

 
 

    

 Le problème d’affectation 

 

Soient n  personnes  à  affecter  à  n  tâches.  Le coût  d’affectation de  i  à la tâche  j  est noté   

cij. Le problème consiste à affecter chaque personne à une seule tâche en minimisant le coût 

total. Bien entendu, une tâche ne peut être affectée qu’à une seule personne. 

Soit la matrice des coûts suivante : 

 

 Tâche 1 Tâche 2 Tâche 3 Tâche 4 

Personne a 9 2 7 8 

Personne b 6 4 3 7 

Personne c 5 8 1 8 

Personne d 7 6 9 4 
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Choisissons au hasard une solution, par exemple on va prendre l’affectation suivante: 

 (1, b), (2, c), (3, d) et (4, a). 

 On aura un coût total égal à  6 + 8 + 9 + 8 = 30. 

Cette affection représente la meilleure solution candidate de départ pour l’algorithme. 

 

Borne inférieure 
Il est clair que, quelque soit la solution, son coût  ne peut pas être plus petit que la somme des 

plus petits éléments de chacune des lignes de la matrice des coûts. 

 

Au départ aucune tache n’est affectée. 

LB{ } = 2 + 3 + 1 + 4 = 10. 

 

On va affecter la personne à l’une des taches suivantes : {1, 2, 3, 4} 

LB{ (a, 1) } = 9 + 3 + 1 + 4 = 17. 

LB{ (a, 2) } = 2 + 3 + 1 + 4 = 10. 

LB{ (a, 3) } = 7 + 4 + 5 + 4 = 20. 

LB{ (a, 4) } = 8 + 3 + 1 + 6 = 18. 

 

 

 

 

 

 

 

 

Selon l’heuristique qui choisit le nœud portant la plus petite borne, l’affectation qu’on va 

sélectionner est : la tache 2 à la personne a. 

Donc les taches qu’on peut affecter à la personne b sont : {1, 3, 4} 

LB{ (a, 2), (b, 1) } = 2 + 6 + 1 + 4 = 13. 

LB{ (a, 2), (b, 3) } = 2 + 3 + 5 + 4 = 14. 

LB{ (a, 2), (b, 4) } = 2 + 7 + 1 + 7 = 17. 

 

 

 

 

 

 

 

 

 

 

 

 

Selon l’heuristique qui choisit le nœud portant la borne 10, on sélectionne les affectations 

suivantes : (a, 2) et (b, 1). 

Donc les taches qu’on peut affecter à la personne c sont : {3, 4}. 

LB{ (a, 2), (b, 1), (c, 3), (d, 4) } = 2 + 6 + 1 + 4 = 13. 

LB{ (a, 2), (b, 1), (c, 4), (d, 3) } = 2 + 6 + 8 + 9 = 25. 

En suivant le même principe, on aura l’arborescence ci-dessous, après élagage des sous arbres 

en jaune : 

     17        

   (a, 1)   

     10        

   (a, 2)   

 

     10        

      / 

      20        

   (a, 3)   

 

     18        

   (a, 4)   

 

     17        

   (a, 1)   

     10        

   (a, 2)   

 

     10        

      / 

 
     20        

   (a, 3)   

 

     18        

   (a, 4)   

 

     14        

   (b, 3)   

 

     17        

   (b, 41)   

 

     13        

   (b, 1)   
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 Le problème du Flow shop à trois machines 

 

Soient à exécuter n tâches sur 3 machines. Chaque tâche doit s’exécuter sur la machine 1, 

ensuite sur la machine 2  et enfin  sur la machine 3. Le temps d’exécution de la tâche i sur la 

machine 1 est noté par  ai , sur la machine 2 par  bi et sur la machine 3 par  ci . On désire 

trouver une permutation d’exécution de ces n tâches sur les trois machines de tel manière à 

minimiser le temps total d’accomplissement, appelé makespan. 

 

Prenons  l’exemple suivant de 4 tâches sur 3 machines avec les temps d’exécution suivants : 

 

 ai bi ci 

Tâche 1 1 8 4 

Tâche 2 2 4 5 

Tâche 3 6 2 8 

Tâche 4 3 9 2 

 

Si on décide d’exécuter les tâches dans l’ordre 4, 3, 1 et 2, alors le temps d’accomplissement 

de toutes les tâches est égal à 31, comme illustré par le diagramme de Gantt suivant : 

 
0              3                              9   10        12      14                                         22                  26                        31 

4 3  2                     

   4 3 1 2      

            4 3 1 2 

 

D’une façon générale, soit A = { i(1), i(2),...,i(k) }  l’ensemble des premières tâches déjà 

exécutées dans cet ordre, et U  l’ensemble des tâches non encore exécutées, à un instant 

donné. Pour  j = 1, 2,…, k , on pose                  , les dates de fin de la tâche i(k) sur la 

machine 1, la machine 2 et la machine 3, respectivement. Ces trois variables sont calculées 

récursivement comme suit : 

            ,                         

                  ,                                   

                        ,                                   

     17        

   (a, 1)   

     10        

   (a, 2)   

 

     10        

      / 

 
     20        

   (a, 3)   

 

     18        

   (a, 4)   

 

     14        

   (b, 3)   

 

     17        

   (b, 4)   

 

     13        

   (b, 1)   

 

     13 

(c,3),(d,4) 

     25 

(c,4),(d,3) 
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Pour calculer une borne inférieure  à ce problème, nous allons considérer trois possibilités les 

plus favorables qui peuvent se présenter. Autrement dit, nous allons déterminer le plus court 

temps pour exécuter les jobs dans l’ensemble U des tâches non encore exécutées. 

 

Il est clair que dans toute solution, l’exécution des tâches sur la machine 1 est continuelle. 

Considérons la dernière tâche, disons i(n) , d’une solution donnée. Le meilleur qui puisse 

arriver à cette tâche est de ne pas attendre sur la machine 2  et  la machine 3. Autrement dit, le 

makespan Cmax  est alors :  

                                       

Par conséquent, si on choisit les plus courts temps d’exécution sur la machine 2 et 3, alors 

quelque soit la solution, on aura : 

                                        

 

Similairement, en considérant que  la machine 2 est continue dans son exécution. On a alors 

                                

 

En choisissant le plus court temps d’exécution sur la machine 3, quelque soit la solution, on a 

alors:                               

 

Similairement, en considérant que la machine 3 est continue dans son exécution. On obtient la 

borne suivante :                    

 

Par conséquent, quelque soit la solution,  son makespan ne peut être mieux que la valeur des 

trois expressions ci-dessus. Autrement dit, nous avons bien: 

 

                                                                           

        . 
 

Passons maintenant à la résolution de notre problème mais en faisant un parcours en 

profondeur d’abord. 

 

Au départ nous avons une borne supérieure égale à 31. 

 

À la racine de l’arbre, aucune tâche n’est exécutée, la borne inférieure est donc : 

 

                                                                   

         =   { 12+9,   23+2,   19 } = 25.    

 

Autrement dit, aucune solution ne peut avoir un makespan inférieur à 25. 

 

- Si on met la tâche 1 en position 1, on obtient: A = {1},   U = {2, 3, 4} 

                
borne inférieure = max{ 1+11+ 9,   9 +15 + 2,   13 +15 }= 28 . 

 

- Si on met la tâche 2 en position 2, on obtient: A = {1, 2},    U={3, 4} 

                                             
borne inférieure = max{ 3 + 9 +10,   13 +11+ 2,   18 +10 }= 28 . 
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- Si on met la tâche 3 en position 3, on obtient: A = {1, 2, 3},   U={4} 

                                              
borne inférieure = max{ 9 +3+11, 15 +9+ 2, 26 +2 }= 28 . 

 

- Si on met la tâche 4 en position 4, on obtient: A = {1, 2, 3, 4},   U={} 

                                                
 

En suivant le même principe et après élagage de certaines branches, on aura l’arborescence ci-

dessous avec un makespan = 28. 

                         

 
 

 

La figure suivante nous montre l’arborescence complète  avec les branches élaguées en 

pointillés. 

 
 

Les nœuds créées par des arcs en pointillés sont des nœuds qui n’ont pas été explorés lors de 

la création de l’arborescence car ne pouvant contenir une solution optimales. 
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Résolution d’un PLNE 

 Méthode branch and Bound 

 

Prenons l’exemple du programme linéaire suivant : 

 

       

             
          
          

       

  

 
Pour résoudre  (P)  on va suivre les étapes suivantes : 

 
1) Résoudre (P) à l’aide du simplexe sans tenir compte de la contrainte  x1,  x2  à valeurs 

entières. Solution optimale : x = (x1, x2) = (1.55, 4.03). z(x) = 17, 67. 

Séparer  par rapport à  x1 : x1 ≤ 1  ou  x1 ≥ 2. 

 

2) Ajouter la contrainte   x1 ≤ 1  à  (P)  et  résoudre ce programme à l’aide du simplexe, sans 

tenir compte de la contrainte  x1, x2 à valeurs entières. Solution optimale x = 

(1, 3.67),  z(x) = 15.67. 

Séparer  par rapport à  x2 : x2 ≤ 3  ou  x2 ≥ 4. 

 

3) Ajouter à (P) les contraintes  x1 ≤ 1  et  x2 ≤ 3. La solution optimale de ce programme est à 

valeurs entières : x = (1, 3),  z(x) = 13. 

Evaluer  à 13 (c’est-à-dire ne pas poursuivre le branchement si on obtient des solutions 

optimales < 13). 

 

4) Ajouter à (P) les contraintes  x1 ≤ 1 et  x2 ≥ 4. Ce programme n’a pas de solutions 

réalisables. 

5) Ajouter à (P) la contrainte  x1 ≥ 2. La solution optimale x = (2, 3.75), z(x) = 17. 

Séparer par rapport à  x2 : x2 ≤ 3 ou  x2 ≥ 4. 

6) Ajouter à (P) les contraintes  x1 ≥ 2  et  x2 ≤ 3. Solution optimale x = (3.2, 3),  z(x) 

= 15.2. 

Séparer par rapport à x1 : x1 ≤ 3 ou x1 ≥ 4. 

 

7) Ajouter à (P) les contraintes 2 ≤ x1 ≤ 3 et  x2 ≤ 3. Solution optimale x = 

(3, 3),  z(x) = 15. 

Evaluer à 15. 

 

8) Ajouter à (P) les contraintes  x1 ≥ 4 et  x2 ≤ 3. Cas sans intérêt parce que 

z(x) = 14 < 15 pour la solution optimale  x. 

 

9) Ajouter à (P) les contraintes  x1 ≥ 2 et  x2 ≥ 4. Pas de solutions réalisables. 

 

La solution optimale à valeurs entières est donc celle trouvée en 7) : 

    
    

        ,  avec       .   

L’arborescence qui montre le résultat est la suivante : 
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 La méthode des coupes. 

 

     

             
        

          
       

  

 

                               

La méthode des coupes consiste à ajouter des contraintes supplémentaires qui permettent 

d’approcher les solutions réalisables à valeurs entières sans les écarter du domaine des 

solutions réalisables.  Dans l’exemple ci-dessus une telle contrainte est donnée par  x1 ≤ 3 (on 

coupe à  x1 = 3). 

 

Comment trouver de telles contraintes supplémentaires si le programme linéaire contient plus 

de deux variables ? 

 

Soit       
        

    
   

   , où A est une matrice m × n. 

Posons, pour une base J (avec |J| = m) et une solution réalisable x, 



10 
 

                   où         
      ,          

         

Puisque     est régulier,                         . 

Posons :               et                  

On a donc                où    
         

  

                et                      

Soit           la partie entière de     ,          la partie fractionnaire de      =               

Exemples :                       

                                            
Il s’ensuit : 

   
                    

                  

   
           

                            
  

                  (1) 

 

Soit   une solution réalisable de (P ) à valeurs entières. L’égalité (1) vaut pour x, le côté 

gauche étant à valeurs entières. En plus, 

   
           

      
         

                                 (2) 

 

Comme la partie gauche de (2) est à valeurs entières, 

    
           

            

 

Comme (1) est valable pour toute solution réalisable, il s’ensuit que : 

 

               
        

 

Proposition  En ajoutant à (P), la contrainte : 

 

               
  

         

 

On n’écarte pas de solutions réalisables à valeurs entières de l’ensemble des solutions 

réalisables. 

 

Remarque. Comme l’exemple suivant montre, on arrive à la solution optimale à valeurs 

entières en ajoutant, à plusieurs reprises si nécessaire, des contraintes supplémentaires suivant 

la proposition ci-dessus. 

 

Exemple. 

 

               

             
        
          

       

  

 

Pour résoudre (P)  on procède par étapes : 

1) Résolution avec le simplexe sans tenir  compte de la condition « x1, x2  à valeurs 

entières». Solution optimale x = (18/7, 18/7, 0, 0). 
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Tableau initial 

  x1 x2 x3 x4  

CB XB 2 1 0 0 B 

0 x3 -1 1 1 0 0 

0 x4 5 2 0 1 18 

Zj 0 0 0 0 0 

∆j 2 1 0 0 

 

Tableau final 

  x1 x2 x3 x4  

CB XB 2 1 0 0 b 

1 x2 0 1 5/7 1/7 18/7 

2 x1 1 0 -2/7 1/7 18/7 

Zj 2 1 1/7 3/7 54/7 

∆j 0 0 -1/7 -3/7 

 

Nouvelle contrainte suivant la proposition ci-dessus : 

 
 

 
   

 

 
   

 

 
            (S1) 

La contrainte  exprimée en termes de x1 et de x2 :        

 

2) Résolution de (P), (S1) inclus, par le simplexe. Exige le passage par un programme 

auxiliaire. 

Programme auxiliaire, tableau initial 

  x1 x2 x3 x4 x5 y  

CB XB 0 0 -5/7 -1/7 1 0 b 

0 x2 0 1 5/7 1/7 0 0 18/7 

0 x1 1 0 -2/7 1/7 0 0 18/7 

0 Y 0 0 5/7 1/7 -1 1 4/7 

Zj 0 0 0 0 0 0 -4/7 

∆j 0 0 -5/7 -1/7 1 0 

 

La fonction-objectif du programme auxiliaire est donné par : 

         

               
 

 
 

 

 
   

 

 
      

 

Programme auxiliaire, tableau final 

  x1 x2 x3 x4 x5  

CB XB 0 0 -5/7 -1/7 1 b 

0 x2 0 1 0 0 1 2 

0 x1 1 0 0 1/5 -2/5 14/5 

-5/7 x3 0 0 1 1/5 -7/5 4/5 

Zj 0 0 -5/7 -1/7 -1 -4/7 

∆j 0 0 0 0 1 

 



12 
 

Comme w = 0, le programme (P)+(S1) possède une solution réalisable. On passe à la 

deuxième phase. 

 

Tableau final seconde phase 

  x1 x2 x3 x4 x5  

CB XB 2 1 0 0 0 b 

1 x2 0 1 0 0 1 2 

2 x1 1 0 0 1/5 -2/5 14/5 

0 x3 0 0 1 1/5 -7/5 4/5 

Zj 2 1 0 2/5 1/5 38/5 

∆j 0 0 0 -2/5 -1/5 

 

Nouvelle contrainte selon  la proposition ci-dessus : 

 
 

 
   

 

 
   

 

 
                (S2) 

La contrainte  exprimée en termes de x1 et de x2 : 

         
 

3) Résolution de (P), (S1) et (S2) inclus, exige à nouveau le passage par un programme 

auxiliaire. 

Seconde phase du simplexe, tableau final 

  x1 x2 x3 x4 x5 x6  

CB XB 2 1 0 0 0 0 b 

1 x2 0 1 0 -1/3 0 5/3 2/3 

2 x1 1 0 0 1/3 0 -2/3 10/3 

0 x3 0 0 1 2/3 0 -7/3 8/3 

0 x5 0 0 0 1/3 1 -5/3 4/3 

Zj 2 1 0 1/3 0 1/3 22/3 

∆j 0 0 0 -1/3 0 -1/3 

 

Nouvelle contrainte selon la proposition ci-dessus : 

                         (S3) 

La contrainte  exprimée en termes de x1, x2 :  

          
 

4) Résolution de (P), (S1), (S2) et (S3) inclus, exige à nouveau le passage par un programme 

auxiliaire et mène, cette fois, à une solution optimale à valeurs entières, qui est x = t(3, 1, 2, 0, 

1, 1, 0). 
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Tableau final de la seconde phase du simplexe 

  x1 x2 x3 x4 x5 x6 x7  

CB XB 2 1 0 0 0 0  b 

1 x2 0 1 0 0 0 2 -1/2 1 

2 x1 1 0 0 0 0 -1 1/2 3 

0 x3 0 0 1 0 0 -3 1 2 

0 x5 0 0 0 0 1 -2 1/2 1 

0 x6 0 0 0 1 0 1 -3/2 1 

Zj 2 1 0 0 0 0 1/2 7 

∆j 0 0 0 0 0 0 -1/2 

 

Donc la solution optimale à valeurs entières de (P) est :      
    

            avec      . 

 

Sur la figure ci-après on voit que, en ajoutant successivement (S1), (S2) et (S3), on n’écarte 

pas de solutions à valeurs entières, et on coupe l’ensemble des solutions réalisables de façon 

que la solution optimale à valeurs entières apparaît comme point extrémal. 

 

  


