
1

Programmation par Contraintes

1 - Notion de contrainte

Une contrainte est une relation logique établie entre différentes variables, chacune prenant

sa valeur dans un ensemble qui lui est propre, appelé domaine.

Une contrainte sur un ensemble de variables restreint les valeurs que peuvent prendre

simultanément ses variables. Elle est déclarative et relationnelle puisqu’elle définit une

relation entre les variables sans spécifier de procédure opérationnelle pour assurer cette

relation.

Ainsi, lorsqu'on pose la contrainte « 2x1 – x2 = x3 », on ne s'occupe pas de donner un

algorithme permettant de la résoudre. La connaissance de x1 et x2 nous donne la valeur

de x3, de même la connaissance de x2 et x3 nous donne la valeur de x1, et même encore la

connaissance de x1 et x3 nous donne la valeur de x2.

Les contraintes varient en fonction des domaines de valeurs des variables et peuvent être

définies en extension ou en intension :

 Pour définir une contrainte en extension, on énumère les tuples de valeurs

appartenant à la relation. Par exemple, si les domaines des variables x et y contiennent

les valeurs 0, 1 et 2, alors on peut définir la contrainte « x est plus petit que y » en

extension par « (x,y) ∈ {(0,1), (0,2), (1,2)} »

 Une contrainte peut également être définie en intension, on utilise des propriétés

mathématiques connues. Par exemple : « x+y ≤ 4 » ou encore « x ≤ 1 => y ≠ 2 » ou

même par un prédicat portant sur n variables « allDifferent (x1, …, xn) », appelée

contrainte globale.

1.1 - Arité d'une contrainte

L'arité d'une contrainte est le nombre de variables sur les quelles elle porte. On dira que la

contrainte est :
 unaire si son arité est égale à 1, elle porte sur une seule variable, par exemple « x*x =

4 » ou encore « est-un-triangle(y) »

 binaire si son arité est égale à 2, elle met en relation 2 variables), par exemple « x ≠ y »

ou encore « A U B = C »

 ternaire si son arité est égale à 3 (elle met en relation 3 variables, par exemple « x+y <

3*z-4 » ou encore « (non x) ou y ou z = vrai »

 ...

 n-aire si son arité est égale à n, elle met en relation un ensemble de n variables. Si la

contrainte porte sur toutes les variables on dira que la contrainte est globale.

2

1.2 - Binarisation des contraintes

D’une façon générale, les contraintes d’un CSP peuvent être n-aires, mais on peut toujours

les exprimer en termes de contraintes binaires. Ainsi tout CSP peut se représenter comme un

CSP binaire. Un tel CSP peut être représenté comme un graphe de contraintes

2 - Problèmes de satisfaction de contraintes

Un CSP (Problème de Satisfaction de Contraintes) est un problème modélisé sous la forme

d'un ensemble de contraintes posées sur des variables, chacune de ces variables prenant ses

valeurs dans un domaine. De façon plus formelle, on définira un CSP par un triplet (X, D,

C) tel que :
 X = {X1, X2, ..., Xn} est l'ensemble des variables (les inconnues) du problème ;

 D est la fonction qui associe à chaque variable Xi son domaine D(Xi), c'est-à-dire

l'ensemble des valeurs que peut prendre Xi.

 C = {C1, C2, ..., Ck} est l'ensemble des contraintes. Chaque contrainte Cj est une

relation entre certaines variables de X, restreignant les valeurs que peuvent prendre

simultanément ces variables. Par exemple, on peut définir le CSP (X, D, C) suivant :

 X = {a, b, c, d}

 D(a) = D(b) = D(c) = D(d) = {0, 1}

 C = {a ≠ b, c ≠ d, a+c < b}

Ce CSP comporte 4 variables a, b, c et d, chacune pouvant prendre 2 valeurs (0 ou 1).

Ces variables doivent respecter les contraintes suivantes : a doit être différente

de b, c doit être différente de d et la somme de a et c doit être inférieure à b.

2.1 - Solution d'un CSP

Etant donné un CSP (X, D, C), sa résolution consiste à affecter des valeurs aux variables,

de telle sorte que toutes les contraintes soient satisfaites. On introduit pour cela les notations

et définitions suivantes :

 On appelle affectation le fait d'instancier certaines variables par des valeurs prises

dans leurs domaines. On notera A = { (X1, V1), (X2, V2), ..., (Xr, Vr) } l'affectation qui

instancie la variable X1 par la valeur V1, la variable X2 par la valeur V2, ..., et la

variable Xr par la valeur Vr.

 Une affectation est dite totale si elle instancie toutes les variables du problème, elle

est dite partielle si elle n'en instancie qu'une partie.

 Une affectation A viole une contrainte Ck si toutes les variables de Ck sont

instanciées dans A, et si la relation définie par Ck n'est pas vérifiée pour les valeurs

des variables de Ck définies dans A.

 Une affectation (totale ou partielle) est consistante si elle ne viole aucune contrainte,

et inconsistante si elle viole une ou plusieurs contraintes.

3

 Une solution est une affectation totale consistante, c’est-à-dire une instanciation de

toutes les variables du problème qui ne viole aucune contrainte.

 Exemple

X = {X1, X2, X3, X4}

D = {D1, D2, D3, D4} avec D1 = D2 = D3 = D4 = {0, 1}

C = {X1 ≠ X2, X3 ≠ X4, X1 + X3 < X2}

Une affectation partielle : A = {(X1, 0), (X2, 0)}

Une affectation totale : A = {(X1, 0), (X2, 0), (X3, 0), (X4, 0)}

Une affectation consistante : A = {(X3, 0), (X4, 1)}

Une affectation inconsistante : A = {(X1, 0), (X2, 0)}

Une solution : A = {(X1, 0), (X2, 1), (X3, 0), (X4, 1)}

2.2 - CSP surcontraint ou souscontraint

Lorsqu'un CSP n'a pas de solution, on dit qu'il est surcontraint : il y a trop de contraintes et

on ne peut pas toutes les satisfaire. Dans ce cas, on peut souhaiter trouver l'affectation totale

qui viole le moins de contraintes possibles. Un tel CSP est appelé max-CSP (max car on

cherche à maximiser le nombre de contraintes satisfaites).

Une autre possibilité est d'affecter un poids à chaque contrainte (une valeur proportionnelle à

l'importance de cette contrainte, et de chercher l'affectation totale qui minimise la somme des

poids des contraintes violées. Un tel CSP est appelé CSP valué (VCSP).

Il existe encore d'autre types de CSPs, appelés CSPs basés sur les semi-anneaux (semiring

based CSPs), permettant de définir plus finement des préférences entre les contraintes.

Inversement, lorsqu'un CSP admet beaucoup de solutions différentes, on dit qu'il est sous-

contraint. Si les différentes solutions ne sont pas toutes équivalentes, dans le sens où certaines

sont mieux que d'autres, on peut exprimer des préférences entre les différentes solutions. Pour

cela, on ajoute une fonction qui associe une valeur numérique à chaque solution, valeur

dépendante de la qualité de cette solution. L'objectif est alors de trouver la solution du CSP

qui maximise cette fonction. Un tel CSP est appelé CSOP (Constraint Satisfaction

Optimisation Problem).

3 - Exemple

3.1 - Description du problème

Il s'agit de placer 4 reines sur un échiquier comportant 4 lignes et 4 colonnes, de manière à

ce qu'aucune reine ne soit en prise. On rappelle que 2 reines sont en prise si elles se trouvent

sur une même diagonale, une même ligne ou une même colonne de l'échiquier.

3.2 - Modélisation sous la forme d'un CSP

Pour modéliser un problème sous la forme d'un CSP, il faut identifier :

 L'ensemble des variables X (les inconnues du problème),

4

 La fonction D qui associe à chaque variable de X son domaine (les valeurs que la

variable peut prendre),

 Les contraintes C entre les variables.

Notons qu'à ce niveau, on cherche simplement une spécification formelle du

problème, sans savoir comment le résoudre. Un même problème peut généralement

être modélisé par différents CSPs. Le choix d’une modélisation peut avoir une

influence sur l'efficacité de la résolution.

 Première modélisation

Les "inconnues" du problème sont les positions des reines sur l'échiquier. En

numérotant les lignes et les colonnes de l'échiquier de la façon suivante :

On peut déterminer la position d'une reine par un numéro de ligne et un numéro de

colonne. Ainsi, une première modélisation consiste à associer à chaque reine i deux

variables Li et Ci correspondant respectivement à la ligne et la colonne sur laquelle

placer la reine. Les contraintes spécifient alors que les reines doivent être sur des

lignes différentes, des colonnes différentes et des diagonales différentes. Notons pour

cela que lorsque 2 reines sont sur une même diagonale montante, la somme de leurs

numéros de ligne et de colonne est égale, tandis que lorsqu'elles sont sur une même

diagonale descendante, la différence de leurs numéros de ligne et de colonne est égale.

On en déduit le CSP suivant :

 Variables :

 X = {L1, L2, L3, L4, C1, C2, C3, C4}

 Domaines :

 D(L1) = D(L2) = D(L3) = D(L4) = D(C1) = D(C2) = D(C3) = D(C4) = {1, 2, 3, 4}

 Contraintes : on identifie 4 types de contraintes

o Les reines doivent être sur des lignes différentes :

 Clig = {L1 ≠ L2, L1 ≠ L3, L1 ≠ L4, L2 ≠ L3, L2 ≠ L4, L3 ≠ L4 }

o Les reines doivent être sur des colonnes différentes :

 Ccol = {C1 ≠ C2, C1 ≠ C3, C1 ≠ C4, C2 ≠ C3, C2 ≠ C4, C3 ≠ C4 }

o Les reines doivent être sur des diagonales montantes différentes :

 Cdm = {C1 + L1 ≠ C2 + L2, C1 + L1 ≠ C3 + L3, C1 + L1 ≠ C4 + L4,

C2 + L2 ≠ C3 + L3, C2 + L2 ≠ C4 + L4, C3 + L3 ≠ C4 + L4}

o Les reines doivent être sur des diagonales descendantes différentes :

 Cdd = {C1 - L1 ≠ C2 - L2, C1 - L1 ≠ C3 - L3, C1 - L1 ≠ C4 - L4,

C2 - L2 ≠ C3 - L3, C2 - L2 ≠ C4 - L4, C3 - L3 ≠ C4 - L4}

L'ensemble des contraintes est défini par l'union de ces 4 ensembles :

 C = Clig U Ccol U Cdm U Cdd

Les contraintes Clig et Ccol sont des contraintes binaires ; les contraintes Cdm et Cdd

sont des contraintes quaternaires. L'énumération de toutes ces contraintes est ici un

peu fastidieuse. On peut tout aussi bien les définir de la façon suivante :

5

 Contraintes :

o les reines doivent être sur des lignes différentes :

Clig = {Li ≠ Lj / i ∈ {1,2,3,4}, j ∈ {1,2,3,4} et i ≠ j}

o les reines doivent être sur des colonnes différentes :

Ccol = {Ci ≠ Cj / i ∈ {1,2,3,4}, j ∈ {1,2,3,4} et i ≠ j}

o les reines doivent être sur des diagonales montantes différentes :

Cdm = {Ci+Li ≠ Cj+Lj / i ∈ {1,2,3,4}, j ∈ {1,2,3,4} et i ≠ j}

o les reines doivent être sur des diagonales descendantes différentes :

Cdd = {Ci-Li ≠ Cj-Lj / i ∈ {1,2,3,4}, j ∈ {1,2,3,4} et i ≠ j}

On aurait également pu utiliser une contrainte globale pour exprimer le fait que toutes

les variables d'un ensemble doivent avoir des valeurs différentes :

 Clig = toutesDiff({L1, L2, L3, L4}) et Ccol = toutesDiff({C1, C2, C3, C4}).

Une solution du problème des 4 reines, pour cette première modélisation, est

A = {(C1, 1), (L1, 2), (C2, 2), (L2, 4), (C3, 3), (L3, 1), (C4, 4), (L4, 3)}, autrement dit, la

première reine est placée colonne 1 ligne 2, la deuxième, colonne 2 ligne 4, la

troisième, colonne 3 ligne 1 et la quatrième, colonne 4 ligne 3.

 Deuxième modélisation

Dans la mesure où l'on sait dès le départ qu'il y aura une reine et une seule sur chaque

colonne de l'échiquier, le problème peut se résumer à déterminer sur quelle ligne se

trouve la reine placée sur la colonne i. Par conséquent, une deuxième modélisation

consiste à associer une variable Xi à chaque colonne i de telle sorte que Xi désigne le

numéro de ligne sur laquelle placer la reine de la colonne i. Notons que pour cette

deuxième modélisation, on a été obligé de « réfléchir » un peu pour introduire dans la

modélisation une déduction (il y a une seule reine par colonne) qui, on l'espère, va

faciliter le travail de la machine. Le CSP correspondant à cette deuxième modélisation

est le suivant :

 Variables :

 X = {X1, X2, X3, X4}

 Domaines :

 D(X1) = D(X2) = D(X3) = D(X4) = {1, 2, 3, 4}

 Contraintes :

o les reines doivent être sur des lignes différentes :

 Clig = {Xi ≠ Xj / i ∈ {1,2,3,4}, j ∈ {1,2,3,4} et i ≠ j}

o les reines doivent être sur des diagonales montantes différentes :

 Cdm = {Xi + i ≠ Xj + j / i ∈ {1,2,3,4}, j ∈ {1,2,3,4} et i ≠ j}

o les reines doivent être sur des diagonales descendantes différentes :

 Cdd = {Xi - i ≠ Xj - j / i ∈ {1,2,3,4}, j ∈ {1,2,3,4} et i ≠ j}

L'ensemble des contraintes est défini par l'union de ces 3 ensembles :

 C = Clig U Cdm U Cdd

 Une solution du problème des 4 reines, pour cette deuxième modélisation, est :

 A = {(X1, 2), (X2, 4), (X3, 1), (X4, 3)}

6

C’est-à-dire, la reine de la colonne 1 est placée sur la ligne 2, celle de la colonne 2,

ligne 4, celle de la colonne 3, ligne 1 et celle de la colonne 4, ligne 3.

 Troisième modélisation

Une autre façon, radicalement opposée, de modéliser le problème consiste à choisir

comme variables non pas les positions des reines, mais les états des cases de l'échiquier

: on associe une variable à chacune des 16 cases de l'échiquier (on notera Xij la variable

associée à la case située ligne i et colonne j), chaque variable peut prendre pour

valeur 0 (absence de reine sur la case) ou 1 (présence de reine sur la case), les

contraintes spécifient qu'il ne peut y avoir plusieurs reines sur une même ligne, une

même colonne ou une même diagonale. Le CSP correspondant à cette troisième

modélisation est le suivant :

 Variables :

X = {X11, X12, X13, X14, X21, X22, X23, X24, X31, X32, X33, X34, X41, X42, X43, X44}

 Domaines :

D(Xij) = {0, 1} pour tout i et tout j compris entre 1 et 4

 Contraintes :

o Il y a une reine par ligne

Clig = {Xi1 + Xi2 + Xi3 + Xi4 = 1 / i ∈ {1, 2, 3,4}}

o Il y a une reine par colonne

Ccol = {X1i + X2i + X3i + X4i = 1 / i ∈ {1, 2, 3,4}}

o Les reines doivent être sur des diagonales montantes différentes

Cdm = pour tout couple de variables différentes Xi j et Xk l, i + j = k+l ⇒ Xi j +

Xk l ≤ 1

o Les reines doivent être sur des diagonales descendantes différentes

Cdd = pour tout couple de variables différentes Xi j et Xk l, i - j=k - l ⇒ Xi j +

Xk l ≤ 1

L'ensemble des contraintes est défini par l'union de ces 4 ensembles

C = Clig U Ccol U Cdm U Cdd

Une solution du problème des 4 reines, pour cette troisième modélisation, est :

A = {(X11, 0), (X12, 1), (X13, 0), (X14, 0), (X21, 0), (X22, 0), (X23, 0), (X24, 1), (X31, 1),

(X32, 0), (X33, 0), (X34, 0), (X41, 0), (X42, 0), (X43, 1), (X44, 0)}

C’est-à-dire, la case ligne 1 colonne 1 (X11) est vide, la case ligne 1 colonne 2 (X12) est

occupée, ...

 Choix d’une modélisation

La question (légitime) que l'on peut maintenant se poser est la suivante: « Quelle est la

meilleure modélisation ? »

Pour répondre à cette question on peut envisager plusieurs cas :

1. Celle qui modélise le mieux la réalité du problème. De ce point de vue, les 3

modélisations sont équivalentes.

7

2. Celle qui est la plus facile à trouver. De ce point de vue, la première modélisation

est probablement plus "simple"... même si cela est subjectif !

3. Celle qui permettra de résoudre le problème le plus efficacement. On ne peut

vraiment répondre à cette question qu'à partir du moment où l'on sait comment un

CSP est résolu. Intuitivement, on se doute que la deuxième modélisation devrait

être meilleure que la première dans la mesure où elle prend en compte le fait que les

reines sont sur des colonnes différentes par la définition même des variables, sans

avoir à poser de contrainte. On verra que « l'espace de recherche » de cette

deuxième modélisation est plus petit que celui de la première.

 Généralisation à n reines

On peut généraliser le problème au placement de n reines sur un échiquier

comportant n colonnes et n lignes. Par exemple, la deuxième modélisation devient :

 Variables :

X = {Xi / i est un entier compris entre 1 et n }

 Domaines :

Quelque soit Xi ∈ X, D(Xi) = {j / j est un entier compris entre 1 et n}

 Contraintes :

o les reines doivent être sur des lignes différentes :

Clig = {Xi ≠ Xj / i et j sont 2 entiers différents compris entre 1 et n}

o les reines doivent être sur des diagonales montantes différentes :

 Cdm = {Xi + i ≠ Xj + j / i et j sont 2 entiers différents compris entre 1 et n}

o les reines doivent être sur des diagonales descendantes différentes :

 Cdd = {Xi - i ≠ Xj - j / i et j sont 2 entiers différents compris entre 1 et n}

L'ensemble des contraintes est défini par l'union de ces 3 ensembles :

 C = Clig U Cdm U Cdd

4 - Résolution des CSPs

Après la phase de modélisation, on va maintenant étudier quelques algorithmes permettant

de résoudre, de façon générique, certains de ces CSPs. On se restreindra aux CSPs sur les

domaines finis, c'est-à-dire, les CSPs dont les domaines des variables sont des ensembles

finis de valeurs. Le point commun à tous les algorithmes que nous allons étudier est

d'explorer méthodiquement l'ensemble des affectations possibles jusqu'à, soit trouver une

solution (quand le CSP est consistant), soit démontrer qu'il n'existe pas de solution (quand le

CSP est inconsistant).

4.1 - L'algorithme « génère et teste »

 Principe de l'algorithme

Il s’agit d’une recherche systématique d'une solution :

 Génération d'une affectation totale

 Test de la satisfaction de toutes les contraintes

8

La façon la plus simple (très naïve !) de résoudre un CSP sur les domaines finis consiste à

énumérer toutes les affectations totales possibles jusqu'à en trouver une qui satisfasse toutes

les contraintes.

Ce principe est repris dans la fonction récursive « GenereEtTeste(A, (X, D, C)) » décrite

ci-dessous. Dans cette fonction, A contient une affectation partielle et (X, D, C) décrit le CSP

à résoudre. Au départ, l'affectation partielle A sera vide, la fonction retourne vrai si on peut

étendre l'affectation partielle A en une affectation totale consistante (une solution) et faux

sinon.

Fonction GenereEtTeste(A, (X, D, C)) : Booléen

 /* (X, D, C) = un CSP sur les domaines finis */

 /* A = une affectation partielle pour (X, D, C) */

Début
 Si (toutes les variables de X se trouvent dans A) Alors /* A est une affectation totale*/

 Si (A est consistante) Alors /* A est une solution */

 Retourner vrai

 Sinon
 Retourner faux

 Fin Si
 Sinon /* A est une affectation partielle */

 Choisir une variable Xi de X, non affectée à une valeur dans A

 Pour toute valeur Vj ∈ D(Xi) Faire

 Si (GénèreEtTeste(A U (Xi , Vj), (X, D, C)) = vrai) Alors

 Retourner vrai

 Fin Si

 Fin Pour
 Retourner faux

 Fin Si

Fin

 Exemple de trace d'exécution de « GenereEtTeste»

Considérons par exemple le CSP (X, D, C) suivant :

 X = {a, b, c, d}

 D(a) = D(b) = D(c) = D(d) = {0, 1}

 C = {a ≠ b, c ≠ d, a + c < b}

L'enchainement des appels successifs à la fonction GenereEtTeste (abrégée par GET) est

représenté ci-dessous (chaque rectangle correspond à un appel de la fonction, et précise la

valeur de l'affectation partielle en cours de construction A).

9

4.2 - Espace de recherche d'un CSP

On appelle « Espace de recherche d’un CSP », L'ensemble de toutes les affectations

complètes possibles.

Pour un CSP (X, D, C) où X = {X1, X2, ..., Xn}) et D= {D(X1), D(X2) ,…, D(Xn)} , la

taille de l’espace de recherche est défini par :

|E| = |D(X1)| * |D(X2)| * ... * |D(Xn)|

Ainsi, si tous les domaines des variables sont de taille k (|D(Xi)| = k), alors la taille de

l'espace de recherche devient : |E| = k
n
, Donc, le nombre d'affectations que « GenereEtTeste»

génère croit de façon exponentielle en fonction du nombre de variables du problème. Dans le

pire des cas, si n est grand c’est l’explosion combinatoire !,

 Quelques idées pour améliorer « génère et teste »

Dans le cas où le nombre de variables est élevé, il est déconseillé d’appliquer bêtement

l'algorithme « génère et teste ». Il faut donc chercher à réduire au tant que possible l'espace

de recherche:

 Ne développer que les affectations partielles consistantes : dès lors qu'une affectation

partielle est inconsistante, il est inutile de chercher à l'étendre en une affectation totale

puisque celle-ci sera nécessairement inconsistante.

10

 Réduire les tailles des domaines des variables en leur enlevant les valeurs

« incompatibles » : pendant la génération d'affectations, on filtre le domaine des

variables pour ne garder que les valeurs « localement consistantes » avec l'affectation

en cours de construction, et dès lors que le domaine d'une variable devient vide, on

arrête l'énumération pour cette affectation partielle.

 Introduire des « heuristiques » pour guider la recherche : lorsqu'on énumère les

affectations possibles, on peut essayer d'énumérer en premier celles qui sont les plus

« prometteuses », en espérant ainsi tomber rapidement sur une solution.

 Lors d'un échec, on peut essayer d'identifier la cause de l'échec (quelle est la variable

qui viole une contrainte) pour ensuite « retourner en arrière » directement là où cette

variable a été instanciée afin de remettre en cause plus rapidement la variable à

l'origine de l’échec. C'est ce que l'on appelle le « retour arrière intelligent » (intelligent

backtracking).

 Une autre approche particulièrement séduisante consiste à exploiter des connaissances

sur les types de contraintes utilisées pour réduire l'espace de recherche. considérons

par exemple le CSP (X, D, C) suivant :

- X={a, b, c},

- D(a)=D(b)=D(c)={0,1,2,3,4, ..., 10000},

- C={4*a - 2*b = 6*c + 3}

L'espace de recherche de ce CSP comporte 1000 milliard d'affectations. Pour résoudre

ce CSP, on peut énumérer toutes ces combinaisons, en espérant de trouver une qui

satisfasse la contrainte 4*a - 2*b = 6*c + 3. En revanche un simple raisonnement

permet de conclure très rapidement que ce CSP n'a pas de solution. En effet, la partie

gauche de l'équation donne toujours un nombre pair, et celle de la droite donne

toujours un nombre impair !.

4.3 - L'algorithme « simple retour-arrière»

 Principe de l'algorithme

Une première idée d'améliorer l'algorithme « génère et teste» c’est de tester la consistance de

l'affectation partielle au fur et à mesure de sa construction. En effet si une affectation partielle

est inconsistante, il est impossible de trouver une solution dans cette branche. Dans ce cas,

pour continuer la recherche on fait un « backtrack », c’est-à-dire un retour en arrière jusqu'à

la plus récente instanciation partielle consistante.

Par exemple, sur la trace d'exécution de « GenereEtTeste», décrite ci-dessus, on remarque que

l'algorithme génère toutes les affectations totales inconsistantes après l’affectation partielle A

= {(a, 0), (b, 0)} qui viole la contrainte {a ≠ b}. L'algorithme « simple retour-arrière» va faire

un « backtrack » pour choisir une autre valeur pour b.

Ce principe est repris dans la fonction récursive « SimpleRetourArrière(A, (X, D, C)) »

décrite ci-dessous.

11

Fonction SimpleRetourArrière(A, (X, D, C)) : Booléen

Début
 Si (A n'est pas consistante) Alors

 Retourner faux

 Fin Si
 Si (toutes les variables de X sont instanciées dans A) Alors

 /* A est une affectation totale et consistante « une solution » */

 Retourner vrai

 Sinon /* A est une affectation partielle consistante */

 Choisir une variable Xi de X qui n'est pas encore instanciée dans A

 Pour toute valeur Vj ∈ D(Xi) Faire

 Si (simpleRetourArrière(A U (Xi , Vj), (X, D, C)) = vrai) Alors

 Retourner vrai

 Fin Si

 Fin Pour
 Retourner faux

 Fin Si

Fin

 Exemple de trace d'exécution de « SimpleRetourArrière »

Reprenons le problème des 4 reines :

 Variables : X = {X1, X2 X3, X4}

 Domaines : D(X1) = D(X2) = D(X3) = D(X4) = {1, 2, 3, 4}

 Contraintes : C = {Xi ≠ Xj | i ∈ {1, 2,3, 4}, j ∈ {1, 2,3, 4} et i ≠ j} U {Xi + i ≠ Xj + j | i ∈
{1,2,3,4}, j ∈{1,2,3,4} et i ≠ j } U {Xi - i ≠ Xj - j | i ∈{1,2,3,4}, j ∈{1,2,3,4} et i ≠ j}

L'enchainement des appels successifs à la fonction SimpleRetourArrière peut être représenté

par l'arbre ci-dessous (chaque nœud correspond à un appel de la fonction, l'échiquier dessiné à

chaque nœud décrit l'affectation partielle en cours)

12

 4.4 - L'algorithme « anticipation»

 Notions de filtrage et de consistance locale

Pour améliorer l'algorithme « simple retour-arrière», dès qu’une nouvelle variable est

instanciée, on va supprimer des domaines des variables non encore instanciées les valeurs qui

ne sont pas compatibles avec la valeur choisie, il s’agit d’une anticipation.

Pour mettre ce principe en œuvre, on va, à chaque étape de la recherche, filtrer les domaines

des variables non affectées en enlevant les valeurs « localement inconsistantes», c'est-à-dire

celles dont on peut inférer qu'elles n'appartiendront à aucune solution.

Considérons un CSP (X, D, C), et une affectation partielle consistante A.

Le filtrage le plus simple consiste à anticiper d'une étape l'énumération: pour chaque

variable X non affectée dans A, on enlève de D(X) toute valeur v telle que l'affectation

A U {(X, v)} soit inconsistante.

 Par exemple pour le problème des 4 reines, après avoir instancié X1 à 1, on peut enlever du

domaine de X2 la valeur 1 (qui viole la contrainte : X1 ≠ X2) et la valeur 2 (qui viole la

contrainte : 1 - X1 ≠ 2 - X2).

Un tel filtrage permet d'établir ce qu'on appelle la consistance de nœud « node-consistency »,

 appelée aussi «1-consistance ». Un CSP (X, D, C) est consistant de nœud si pour toute

variable Xi de X, et pour toute valeur v de Di, l'affectation partielle {(Xi, v)} satisfait toutes

les contraintes unaires de C.

Un autre filtrage plus fort, mais aussi plus long à effectuer, consiste à anticiper de deux

étapes l'énumération: pour chaque variable X non affectée dans A, on enlève de D(X) toute

valeur v telle qu'il existe une variable Xj non affectée pour laquelle, pour toute valeur w

de D(Xj), l'affectation A U {(X, v), (Xj, w)} soit inconsistante.

Par exemple pour le problème des 4 reines, après avoir instancié X1 à 1, on peut enlever la

valeur 3 du domaine de X2 car si X1 = 1 et X2 = 3, alors la variable X3 ne peut plus prendre de

valeurs : si X3 = 1, on viole la contrainte X3 ≠ X1 , si X3 = 2, on viole la contrainte X3 + 3 ≠

 X2 + 2 , si X3 = 3, on viole la contrainte X3 ≠ X2 , et si X3 = 4, on viole la contrainte X3 - 3

 ≠ X2 - 2.

Ce filtrage permet d'établir ce qu'on appelle la consistance d'arc «arc-consistency», aussi

appelée «2-consistance». Un CSP (X, D, C) est consistant d'arc si tout couple de variables

(Xi, Xj) de X, et pour toute valeur vi de Di, il existe une valeur vj appartenant Dj telle

que l'affectation partielle {(Xi, vi), (Xj, vj)} satisfasse toutes les contraintes binaires de C.

Un filtrage encore plus fort, mais aussi encore plus long à effectuer, consiste à anticiper de

trois étapes l'énumération. Ce filtrage permet d'établir ce qu'on appelle la consistance de

chemin « path-consistency », appelée aussi « 3-consistance » et ainsi de suite. Notons que

s'il reste k variables à affecter, et si l'on anticipe de k étapes l’énumération pour établir la

« k-consistance », l'opération de filtrage revient à résoudre le CSP, c'est-à-dire que toutes les

valeurs restant dans les domaines des variables après un tel filtrage appartiennent à une

solution.

13

 Principe de l'algorithme « anticipation»

Le principe général de l'algorithme « anticipation» reprend celui de l'algorithme « simple

retour-arrière», en ajoutant simplement une étape de filtrage à chaque fois qu'une valeur est

affectée à une variable. Comme on vient de le voir, on peut effectuer différents filtrages plus

ou moins forts, permettant d'établir différents niveaux de consistance locale (nœud, arc,

chemin, . . .).

Ce principe de filtrage est repris dans la fonction récursive « anticipation (A, (X, D, C))»

décrite ci-dessous.

Fonction Anticipation (A, (X, D, C)) : Booléen

 Début

 Si (A n'est pas consistante) Alors

 Retourner faux

 Fin Si
 Si toutes les variables de X sont affectées Alors

 /* A est une affectation totale consistante « une solution » */

 Retourner vrai

 Sinon /* A est une affectation partielle consistante */

 Choisir une variable Xi de X qui n'est pas encore affectée

 Pour toute valeur Vi ∈ Di Faire

 /* filtrage des domaines par rapport à A U (Xi, Vi) */

 Pour toute variable Xj de X qui n'est pas encore affectée Faire

 D
’
j ← {Vj ∈ Dj / A U {(Xi, Vi), (Xj, Vj)} est consistante}

 Si D
’
j est vide Alors

 Retourner faux

 FinSi

 Fin Pour

 Si Anticipation (A U {(Xi, Vi)}, (X, D', C)) = vrai Alors

 Retourner vrai

 FinSi

 Fin Pour

 Retourner faux

 Finsi

 Fin

 Exemple de trace d'exécution de « Anticipation»
Considérons de nouveau le problème du placement de 4 reines sur un échiquier 4 x 4.

L'enchainement des appels successifs à la fonction « Anticipation/nœud» peut être représenté

par l'arbre ci-après (les valeurs supprimées par le filtrage sont marquées d'une croix).

14

Si on applique un filtrage plus fort, qui rétablit à chaque étape la consistance d'arc,

l'enchainement des appels successifs à la fonction « Anticipation/arc» correspondante est

représenté par l’arbre ci-après (les valeurs supprimées par le filtrage sont marquées d'une

croix).

Ainsi, on constate sur le problème des 4 reines que le filtrage des domaines permet de réduire

le nombre d'appels récursifs : on passe de 27 appels pour «simple retour-arrière» à 8 appels

pour l'algorithme d'anticipation avec filtrage simple établissant une consistance de nœud. En

utilisant des filtrages plus forts, comme celui qui établit la consistance d'arc, on peut encore

réduire la combinatoire de 8 à 3 appels récursifs. Cependant, il faut noter que plus le filtrage

utilisé est fort, plus cela prendra de temps pour l'exécuter.

