Programmation par Contraintes

1 - Notion de contrainte

Une contrainte est une relation logique établie entre différentes variables, chacune prenant
sa valeur dans un ensemble qui lui est propre, appelé domaine.

Une contrainte sur un ensemble de variables restreint les valeurs que peuvent prendre
simultanément ses variables. Elle est déclarative et relationnelle puisqu’elle définit une
relation entre les variables sans spécifier de procédure opérationnelle pour assurer cette
relation.

Ainsi, lorsqu'on pose la contrainte « 2X; — X = X3 », on ne s'‘occupe pas de donner un
algorithme permettant de la résoudre. La connaissance de x; et X, nous donne la valeur
de x3, de méme la connaissance de X, et x3 nous donne la valeur de x;, et méme encore la
connaissance de X3 et xs nous donne la valeur de x,.

Les contraintes varient en fonction des domaines de valeurs des variables et peuvent étre
définies en extension ou en intension :

e Pour définir une contrainte en extension, on énumere les tuples de valeurs
appartenant a la relation. Par exemple, si les domaines des variables x et y contiennent
les valeurs 0, 1 et 2, alors on peut définir la contrainte « x est plus petit que y » en
extension par « (x,y) € {(0,1), (0,2), (1,2)} »

e Une contrainte peut également étre définie en intension, on utilise des propriétés
mathématiques connues. Par exemple : « x+y <4 » ouencore«Xx<1=>y+#2»o0u
méme par un prédicat portant sur n variables « allDifferent (xi, ..., Xn) », appelée
contrainte globale.

1.1 - Arité d'une contrainte

L'arité d'une contrainte est le nombre de variables sur les quelles elle porte. On dira que la
contrainte est :
e Uunaire si son arité est égale a 1, elle porte sur une seule variable, par exemple « x*x =
4 » ou encore « est-un-triangle(y) »

« binaire si son arité est égale a 2, elle met en relation 2 variables), par exemple « x # y »
ouencore «kcAUB=C»

« ternaire si son arité est égale a 3 (elle met en relation 3 variables, par exemple « x+y <
3*z-4 » ou encore « (non xX) ou 'y ou z = vrai »

e n-aire si son arité est égale an, elle met en relation un ensemble de n variables. Si la
contrainte porte sur toutes les variables on dira que la contrainte est globale.

1.2 - Binarisation des contraintes

D’une fagon générale, les contraintes d’un CSP peuvent étre n-aires, mais on peut toujours
les exprimer en termes de contraintes binaires. Ainsi tout CSP peut se représenter comme un
CSP binaire. Un tel CSP peut étre représenté comme un graphe de contraintes

2 - Problemes de satisfaction de contraintes

Un CSP (Probleme de Satisfaction de Contraintes) est un probléme modélisé sous la forme
d'un ensemble de contraintes posées sur des variables, chacune de ces variables prenant ses
valeurs dans un domaine. De facon plus formelle, on définira un CSP par un triplet (X, D,
C) tel que :

X ={X1, Xy, ..., Xn} est I'ensemble des variables (les inconnues) du probléme ;

D est la fonction qui associe a chaque variable X;j son domaine D(X;), c'est-a-dire
I'ensemble des valeurs que peut prendre X;.

C = {Cy, Cy, .., Cest I'ensemble des contraintes. Chaque contrainte C;j est une
relation entre certaines variables de X, restreignant les valeurs que peuvent prendre
simultanément ces variables. Par exemple, on peut définir le CSP (X, D, C) suivant :

v X={a, b,c,d}
v' D(a) = D(b) = D(c) = D(d) = {0, 1}
v C={a+b, c#d atc<b}

Ce CSP comporte 4 variables a, b, ¢ et d, chacune pouvant prendre 2 valeurs (0 ou 1).
Ces variables doivent respecter les contraintes suivantes : a doit étre différente
de b, c doit étre différente de d et la somme de a et c doit étre inférieure a b.

2.1 - Solution d'un CSP

Etant donné un CSP (X, D, C), sa résolution consiste a affecter des valeurs aux variables,
de telle sorte que toutes les contraintes soient satisfaites. On introduit pour cela les notations
et définitions suivantes :

On appelle affectation le fait d'instancier certaines variables par des valeurs prises
dans leurs domaines. On notera A = { (X1, V1), (X2, V2), ..., (Xi, V;) } I'affectation qui
instancie la variable X; par la valeur Vi, la variable X; par la valeur V,, ...,et la
variable X; par la valeur V..

Une affectation est dite totale si elle instancie toutes les variables du probleme, elle
est dite partielle si elle n'en instancie qu'une partie.

Une affectation A viole une contrainte Cy si toutes les variables de Cy sont
instanciées dans A, et si la relation definie par Cy n'est pas vérifiée pour les valeurs
des variables de Cy définies dans A.

Une affectation (totale ou partielle) est consistante si elle ne viole aucune contrainte,
et inconsistante si elle viole une ou plusieurs contraintes.

« Une solution est une affectation totale consistante, c’est-a-dire une instanciation de
toutes les variables du probleme qui ne viole aucune contrainte.

®» Exemple
X ={X1, Xo, X3, Xa}
D= {D]_, D,, Ds, D4} avec D1 =Dy=D3=D4 = {0, 1}
C={X1# Xy, Xg#Xa, X1+ X3<X}

Une affectation partielle : A = {(X1, 0), (X2, 0)}

Une affectation totale : A = {(X1, 0), (X2, 0), (X3, 0), (X4, 0)}
Une affectation consistante : A = {(X3, 0), (X4, 1)}

Une affectation inconsistante : A = {(X1, 0), (X2, 0)}

Une solution: A ={(X1, 0), (X2, 1), (X3, 0), (X4, 1)}

2.2 - CSP surcontraint ou souscontraint

Lorsqu'un CSP n'a pas de solution, on dit qu'il est surcontraint : il y a trop de contraintes et
on ne peut pas toutes les satisfaire. Dans ce cas, on peut souhaiter trouver l'affectation totale
qui viole le moins de contraintes possibles. Un tel CSP est appelé max-CSP (max car on
cherche a maximiser le nombre de contraintes satisfaites).

Une autre possibilité est d'affecter un poids a chaque contrainte (une valeur proportionnelle a
I'importance de cette contrainte, et de chercher I'affectation totale qui minimise la somme des
poids des contraintes violées. Un tel CSP est appelé CSP valué (VCSP).

Il existe encore d'autre types de CSPs, appelés CSPs basés sur les semi-anneaux (semiring
based CSPs), permettant de définir plus finement des préférences entre les contraintes.

Inversement, lorsqu'un CSP admet beaucoup de solutions différentes, on dit qu'il est sous-
contraint. Si les différentes solutions ne sont pas toutes équivalentes, dans le sens ou certaines
sont mieux que d'autres, on peut exprimer des préférences entre les différentes solutions. Pour
cela, on ajoute une fonction qui associe une valeur numérique a chaque solution, valeur
dépendante de la qualité de cette solution. L'objectif est alors de trouver la solution du CSP
qui maximise cette fonction. Un tel CSP est appelé CSOP (Constraint Satisfaction
Optimisation Problem).

3 - Exemple

3.1 - Description du probleme

Il s'agit de placer 4 reines sur un échiquier comportant 4 lignes et 4 colonnes, de maniére a
ce qu'aucune reine ne soit en prise. On rappelle que 2 reines sont en prise si elles se trouvent
sur une méme diagonale, une méme ligne ou une méme colonne de I'échiquier.

3.2 - Modélisation sous la forme d'un CSP

Pour modéliser un probleme sous la forme d'un CSP, il faut identifier :
v" L'ensemble des variables X (les inconnues du probléme),

v La fonction D qui associe a chaque variable de X son domaine (les valeurs que la
variable peut prendre),
v' Les contraintes C entre les variables.

Notons qu'a ce niveau, on cherche simplement une speécification formelle du
probleme, sans savoir comment le résoudre. Un méme probleme peut généralement
étre modélisé par différents CSPs. Le choix d’une modélisation peut avoir une
influence sur I'efficacité de la résolution.

Premiere modélisation
Les "inconnues" du probléme sont les positions des reines sur I'échiquier. En

numérotant les lignes et les colonnes de I'échiquier de la fagon suivante :
3 3 4

1 |23
‘N
AN

On peut déterminer la position d'une reine par un numéro de ligne et un numéro de
colonne. Ainsi, une premiere modélisation consiste & associer a chaque reine i deux
variables Li et Ci correspondant respectivement a la ligne et la colonne sur laquelle
placer la reine. Les contraintes spécifient alors que les reines doivent étre sur des
lignes différentes, des colonnes différentes et des diagonales différentes. Notons pour
cela que lorsque 2 reines sont sur une méme diagonale montante, la somme de leurs
numéros de ligne et de colonne est égale, tandis que lorsqu'elles sont sur une méme
diagonale descendante, la différence de leurs numéros de ligne et de colonne est égale.
On en déduit le CSP suivant :
e Variables :
X= {Ll, |_2, L3, L4, Cl, C2, C3, C4}
e Domaines :
D(Ll) = D(Lz) = D(Lg) = D(L4) = D(Cl) = D(Cz) = D(Cg) = D(C4) = {1, 2,3, 4}
« Contraintes : on identifie 4 types de contraintes
o Les reines doivent étre sur des lignes différentes :
Cig ={L1 # Lo, L1 # L3, L1 #La, Lo # L3, Lo #L4, L3 # La}
o Lesreines doivent étre sur des colonnes différentes :
Coot ={C1 # C3,C1 # C5,C1 # C4,Co # C3,Cy # Cy, C3 # Cy }
o Les reines doivent étre sur des diagonales montantes différentes :
Cim={C1+L1#Co+ Ly Ci+L1#Cs+ L3, Ci+Ly#Cy+ Ly,
Co+L#Cs+ L3, Co+ Ly #Cs+ Lsy, C3+ L3 #Cy + La}
o Les reines doivent étre sur des diagonales descendantes différentes :
Cad ={C1-L1 # Cy-Ly, Ci-Ly # C3-Ls, Ci-L1 # Cy- Ly,
Co-Ly # Cs-Ls, Co-Ly # Cy-La, C3-Ls # Cs-La}
L'ensemble des contraintes est défini par I'union de ces 4 ensembles :
C=Cig UCc UCyn U Cgyq

Les contraintes Ciig et Cco sont des contraintes binaires ; les contraintes Cym et Cyq
sont des contraintes quaternaires. L'énumération de toutes ces contraintes est ici un
peu fastidieuse. On peut tout aussi bien les définir de la fagon suivante :

o Contraintes :

o les reines doivent étre sur des lignes différentes :
Cig ={Li # Lj/ i € {1,234}, j € {1,234} et i #}

o les reines doivent étre sur des colonnes différentes :
Cel ={Ci # Cj/i € {1,234}, j € {1,234} et i#}}

o les reines doivent étre sur des diagonales montantes différentes :
Cam ={Ci+L; # Cj"'Lj/i e {1,2,34}, j € {1,2,3,4} et i#}

o les reines doivent étre sur des diagonales descendantes différentes :
Cas ={Ci-L; # Cj-Lj/i e {1,2,34}, j € {1,234} et i#j}

On aurait également pu utiliser une contrainte globale pour exprimer le fait que toutes
les variables d'un ensemble doivent avoir des valeurs différentes :
C|ig = toutesDiff({Ll, L,, Ls, L4}) et Ce = tOUtESDiﬁ({Cl, C,, Cs, C4})

Une solution du probléme des 4 reines, pour cette premiére modélisation, est

A ={(Cy, 1), (Ly, 2), (Cy, 2), (L2, 4), (C3, 3), (L3, 1), (C4, 4), (Ls, 3)}, autrement dit, la
premiére reine est placée colonne 1 ligne 2, la deuxiéme, colonne 2 ligne 4, la
troisieme, colonne 3 ligne 1 et la quatrieme, colonne 4 ligne 3.

®» Deuxiéme modélisation

Dans la mesure ou l'on sait dés le départ qu'il y aura une reine et une seule sur chaque
colonne de I'échiquier, le probleme peut se résumer a déterminer sur quelle ligne se
trouve la reine placée sur la colonnei. Par conséquent, une deuxieme modélisation
consiste a associer une variable X; a chaque colonne i de telle sorte que X; désigne le
numéro de ligne sur laquelle placer la reine de la colonne i. Notons que pour cette
deuxieme modélisation, on a été obligé de « réfléchir » un peu pour introduire dans la
modélisation une déduction (il y a une seule reine par colonne) qui, on I'espere, va
faciliter le travail de la machine. Le CSP correspondant a cette deuxieme modélisation
est le suivant :

o Variables:
X= {Xl, Xz, X3, X4}
e Domaines :
D(X1) = D(X2) = D(X3) =D(Xs) = {1, 2, 3, 4}
o Contraintes :
o les reines doivent étre sur des lignes différentes :
Cig={Xi # X;/i € {1,23,4},j € {1,2,3,4} et i #}}
o les reines doivent étre sur des diagonales montantes différentes :
Cam={Xi+1i # X;+jlie {1,234},) € {1,234} et i £/}
o les reines doivent étre sur des diagonales descendantes différentes :
Ca={Xi-1 # X -jlie {1,234},] € {1,2,3,4} et i £}

L'ensemble des contraintes est défini par I'union de ces 3 ensembles :
C= C|ig U Cdm U Cdd

Une solution du probléme des 4 reines, pour cette deuxiéme modélisation, est :
A= {(Xl’ 2)1 (X21 4)’ (X3! l)v (X41 3)}

C’est-a-dire, la reine de la colonne 1 est placée sur la ligne 2, celle de la colonne 2,
ligne 4, celle de la colonne 3, ligne 1 et celle de la colonne 4, ligne 3.

®» Troisiéme modélisation

Une autre facon, radicalement opposée, de modéliser le probleme consiste a choisir
comme variables non pas les positions des reines, mais les états des cases de I'échiquier
: on associe une variable a chacune des 16 cases de I'échiquier (on notera X;; la variable
associee a la case située ligneiet colonnej), chaque variable peut prendre pour
valeur 0 (absence de reine sur la case) ou 1l (présence de reine sur la case), les
contraintes spécifient qu'il ne peut y avoir plusieurs reines sur une méme ligne, une
méme colonne ou une méme diagonale. Le CSP correspondant & cette troisiéme
modeélisation est le suivant :

 Variables :
X = {Xu1, X12, X13, X14, X1, X22, X23, X24, X31, X32, X33, X34, Xa1, Xa2, X43, Xsa}
« Domaines :
D(Xij) = {0, 1} pour tout i et tout j compris entre 1 et 4
« Contraintes :
o Il'y aune reine par ligne
C|ig = {Xil + Xijp + Xiz + Xjg = 1/i € {l, 2, 3,4}}
o Il'y aune reine par colonne
Ceol = {Xli + Xoi+ X3+ Xgi=1 /i e {1, 2, 3,4}}
o Les reines doivent étre sur des diagonales montantes différentes
Cam = pour tout couple de variables différentes Xij et Xgi, i +j=k+l = X;; +
Xa <1
o Les reines doivent étre sur des diagonales descendantes différentes
Cqa = pour tout couple de variables différentes Xij et Xy, i-j=k-1 = X;j +
X <1

L'ensemble des contraintes est défini par I'union de ces 4 ensembles
C=Cig UCc UCym U Cgyq

Une solution du probléme des 4 reines, pour cette troisieme modélisation, est :
A = {(X11, 0), (X12, 1), (X13, 0), (X14, 0), (X21, 0), (X22, 0), (X23, 0), (X24, 1), (Xa1, 1),
(X32, 0), (X33, 0), (X34, 0), (Xa1, 0), (Xa2, 0), (Xa3, 1), (Xas, 0)}

C’est-a-dire, la case ligne 1 colonne 1 (X11) est vide, la case ligne 1 colonne 2 (X12) est
occupée, ...

®» Choix d’une modélisation

La question (légitime) que I'on peut maintenant se poser est la suivante: « Quelle est la
meilleure modélisation ? »
Pour repondre a cette question on peut envisager plusieurs cas :

1. Celle qui modélise le mieux la réalite du probléme. De ce point de vue, les 3
modélisations sont équivalentes.

2. Celle qui est la plus facile a trouver. De ce point de vue, la premiere modélisation
est probablement plus "simple"... méme si cela est subjectif !

3. Celle qui permettra de résoudre le probléme le plus efficacement. On ne peut
vraiment répondre a cette question qu'a partir du moment ou l'on sait comment un
CSP est résolu. Intuitivement, on se doute que la deuxiéme modélisation devrait
étre meilleure que la premiere dans la mesure ou elle prend en compte le fait que les
reines sont sur des colonnes différentes par la définition méme des variables, sans
avoir a poser de contrainte. On verra que «l'espace de recherche » de cette
deuxieme modélisation est plus petit que celui de la premiére.

B Généralisation a n reines

On peut généraliser le probleme au placement de nreines sur un échiquier
comportant n colonnes et n lignes. Par exemple, la deuxieme modélisation devient :

e Variables :
X ={Xi/i estunentier comprisentre let n}
e Domaines :
Quelque soit X; € X, D(X;) ={j /] est un entier compris entre 1 et n}
« Contraintes :
o les reines doivent étre sur des lignes différentes :
Ciig = {X; # X; /iet] sont 2 entiers différents compris entre 1 et n}
o les reines doivent étre sur des diagonales montantes différentes :
Cam={Xi+1 # Xj+] /iet]j sont2 entiers différents compris entre 1 et n}
o les reines doivent étre sur des diagonales descendantes différentes :
Caa ={Xi-1 # Xj-j /iet] sont2 entiers différents compris entre 1 et n}

L'ensemble des contraintes est défini par l'union de ces 3 ensembles :
C=CjigU Cym U Cyg

4 - Résolution des CSPs

Apres la phase de modélisation, on va maintenant étudier quelques algorithmes permettant
de résoudre, de facon générique, certains de ces CSPs. On se restreindra aux CSPs sur les
domaines finis, c'est-a-dire, les CSPs dont les domaines des variables sont des ensembles
finis de valeurs. Le point commun a tous les algorithmes que nous allons étudier est
d'explorer méthodiquement l'ensemble des affectations possibles jusqu'a, soit trouver une
solution (quand le CSP est consistant), soit démontrer qu'il n'existe pas de solution (quand le
CSP est inconsistant).

4.1 - L'algorithme « génére et teste »

* Principe de I'algorithme

11 s’agit d’une recherche systématique d'une solution :
v" Génération d'une affectation totale
v' Test de la satisfaction de toutes les contraintes

La facon la plus simple (trés naive !) de résoudre un CSP sur les domaines finis consiste a
énumérer toutes les affectations totales possibles jusqu'a en trouver une qui satisfasse toutes
les contraintes.

Ce principe est repris dans la fonction récursive « GenereEtTeste(A, (X, D, C)) » décrite
ci-dessous. Dans cette fonction, A contient une affectation partielle et (X, D, C) decrit le CSP
a resoudre. Au départ, I'affectation partielle A sera vide, la fonction retourne vrai si on peut
étendre l'affectation partielle A en une affectation totale consistante (une solution) et faux
sinon.

Fonction GenereEtTeste(A, (X, D, C)) : Booléen
/* (X,D,C) = un CSP sur les domaines finis */
[* A = une affectation partielle pour (X,D,C) */

Début
Si (toutes les variables de X se trouvent dans A) Alors /* A est une affectation totale*/
Si (A estconsistante) Alors /* A estune solution */
Retourner vrai
Sinon
Retourner faux
Fin Si
Sinon [* A est une affectation partielle */
Choisir une variable X; de X, non affectée a une valeur dans A
Pour toute valeur V; & D(X) Faire
Si (GénereEtTeste(AU (Xi, Vj), (X,D,C))=vrai) Alors
Retourner vrai
Fin Si
Fin Pour
Retourner faux
Fin Si
Fin

= Exemple de trace d'exécution de « GenereEtTeste»

Considérons par exemple le CSP (X, D, C) suivant:
v X={a, b, c, d}
v D(a) = D(b) = D(c) = D(d) = {0, 1}
v C={a#b, c#d, a+c<b}

L'enchainement des appels successifs a la fonction GenereEtTeste (abrégée par GET) est
représenté ci-dessous (chaque rectangle correspond a un appel de la fonction, et précise la
valeur de I'affectation partielle en cours de construction A).

GET
A={}

ELoume Vral

Choix de Xi=a

GET
A= {(a,0)}
Jcn:toumc vral
Choix de Xi=b
Vi= Vi=L
GET GET
A= {Eﬂsn)y(ban)} A= {(a,U),(b,L)}
wtoume faux ctoume veoal
Choix de Xi=c
GET GET GET
A= {(a,U),(b,U),(c,U)} A= {(a,U),(b,U),(c,L)} A= {(a,U),(b,L),(c,U)}
ctoume Taux J etoume Taux J ctoume veal
Choix de Xi=d Choix de Xi=d
GET GET GET GET
A= {(3,03,(b,0)[[A={(a,0),(b,0} A= {(=00b0) |A={(a,00,(b0) A= {(a,0,(b,L)[[A={(a0)(b,l}
(c,0),0d,00} (c,0)40d, 1)} (c,1),(d,0)} (c,1),(d, 1)} (c,0),0d,0)} (c,0),0d, 1)}
mtoume Taux mtoume Taux mtoume Taux mtoume Taux mtoume Taux Etoume Vral

4.2 - Espace de recherche d'un CSP

On appelle « Espace de recherche d’un CSP », L'ensemble de toutes les affectations
complétes possibles.

Pour un CSP (X, D, C) ou X ={Xy, Xz, ..., Xp}) et D={D(X1), D(X2),...., D(Xn)}, la
taille de I’espace de recherche est défini par :
[E| = ID(X)] * ID(X2)] * ... * [D(Xn)]

Ainsi, si tous les domaines des variables sont de taille k (|D(Xi)|] = k), alors la taille de
I'espace de recherche devient : |[E| = k", Donc, le nombre d'affectations que « GenereEtTeste»
génére croit de facon exponentielle en fonction du nombre de variables du probleme. Dans le
pire des cas, si n est grand ¢’est I’explosion combinatoire !,

= Quelques idées pour améliorer « génére et teste »

Dans le cas ou le nombre de variables est élevé, il est déconseillé d’appliquer bétement
I'algorithme « génére et teste ». Il faut donc chercher a réduire au tant que possible I'espace
de recherche:

o Ne développer que les affectations partielles consistantes : des lors qu'une affectation
partielle est inconsistante, il est inutile de chercher a I'étendre en une affectation totale
puisque celle-ci sera nécessairement inconsistante.

o Réduire les tailles des domaines des variables en leur enlevant les valeurs
« incompatibles » : pendant la genération d'affectations, on filtre le domaine des
variables pour ne garder que les valeurs « localement consistantes » avec l'affectation
en cours de construction, et dés lors que le domaine d'une variable devient vide, on
arréte I'énumeration pour cette affectation partielle.

o Introduire des «heuristiques » pour guider la recherche : lorsqu'on énumere les
affectations possibles, on peut essayer d'énumérer en premier celles qui sont les plus
« prometteuses », en espérant ainsi tomber rapidement sur une solution.

o Lors d'un échec, on peut essayer d'identifier la cause de I'échec (quelle est la variable
qui viole une contrainte) pour ensuite « retourner en arriere » directement la ou cette
variable a été instanciée afin de remettre en cause plus rapidement la variable a
I'origine de 1I’échec. C'est ce que I'on appelle le « retour arriére intelligent » (intelligent
backtracking).

« Une autre approche particulierement séduisante consiste a exploiter des connaissances
sur les types de contraintes utilisées pour réduire I'espace de recherche. considérons
par exemple le CSP (X, D, C) suivant :

- X={a, b, c},
- D(a)=D(b)=D(c)={0,1,2,3,4, ..., 10000},
- C={4*a- 2*b = 6*c + 3}

L'espace de recherche de ce CSP comporte 1000 milliard d'affectations. Pour résoudre
ce CSP, on peut énumérer toutes ces combinaisons, en espérant de trouver une qui
satisfasse la contrainte 4*a - 2*b = 6*c + 3. En revanche un simple raisonnement
permet de conclure trés rapidement que ce CSP n'a pas de solution. En effet, la partie
gauche de I'équation donne toujours un nombre pair, et celle de la droite donne
toujours un nombre impair !.

4.3 - L'algorithme « simple retour-arriére»
* Principe de I'algorithme

Une premiére idée d'améliorer I'algorithme « génére et teste» c’est de tester la consistance de
I'affectation partielle au fur et a mesure de sa construction. En effet si une affectation partielle
est inconsistante, il est impossible de trouver une solution dans cette branche. Dans ce cas,
pour continuer la recherche on fait un « backtrack », ¢’est-a-dire un retour en arriére jusqu'a
la plus récente instanciation partielle consistante.

Par exemple, sur la trace d'exécution de « GenereEtTeste», déecrite ci-dessus, on remarque que
I'algorithme génére toutes les affectations totales inconsistantes aprées 1’affectation partielle A
={(a, 0), (b, 0)} qui viole la contrainte {a # b}. L'algorithme « simple retour-arriere» va faire
un « backtrack » pour choisir une autre valeur pour b.

Ce principe est repris dans la fonction récursive « SimpleRetourArriere(A, (X, D, C)) »
décrite ci-dessous.

10

Fonction SimpleRetourArriere(A, (X, D, C)) : Booléen
Début

Si (A n'estpas consistante) Alors
Retourner faux
Fin Si
Si (toutes les variables de X sont instanciées dans A) Alors
[* A est une affectation totale et consistante « une solution » */
Retourner vrai
Sinon /* Aest une affectation partielle consistante */
Choisir une variable X; de X quin'est pas encore instanciée dans A
Pour toutevaleur V; € D(X;) Faire

Si (simpleRetourArriere(A U (Xi, V), (X, D, C)) = vrai) Alors
Retourner vrai
Fin Si
Fin Pour
Retourner faux
Fin Si
Fin

= Exemple de trace d'exécution de « SimpleRetourArriére »
Reprenons le probléme des 4 reines :
Variables : X = {X1, X X3, X4}
Domaines : D(X;) = D(X;) = D(X3) =D(X4) ={1, 2, 3, 4}

Contraintes : C={X; # Xj|i€{1,2,3,4}, je{1,23,4} et iZjJUL{Xi+i # X;+j| i€
{1,234}, j {1,234} et i#jYU{Xi-i # X;-j| i €{1,2,34}, j €{1,2,34} et i # j}

L'enchainement des appels successifs a la fonction SimpleRetourArriére peut étre représenté

par I'arbre ci-dessous (chaque nceud correspond a un appel de la fonction, I'échiquier dessiné a
chaque nceud décrit I'affectation partielle en cours)

11

4.4 - L'algorithme « anticipation»
= Notions de filtrage et de consistance locale

Pour améliorer l'algorithme «simple retour-arriére», deés qu’une nouvelle variable est
instanciée, on va supprimer des domaines des variables non encore instanciées les valeurs qui
ne sont pas compatibles avec la valeur choisie, il s’agit d’une anticipation.

Pour mettre ce principe en ceuvre, on va, a chaque étape de la recherche, filtrer les domaines
des variables non affectées en enlevant les valeurs « localement inconsistantes», c'est-a-dire
celles dont on peut inférer qu'elles n'appartiendront a aucune solution.

Considérons un CSP (X, D, C), et une affectation partielle consistante A.

Le filtrage le plus simple consiste & anticiper d'une étape I'énumération: pour chaque
variable X non affectée dans A, on enleve de D(X) toute valeur v telle que I'affectation
A U {(X, v)} soit inconsistante.

Par exemple pour le probléme des 4 reines, aprées avoir instancié X; a 1, on peut enlever du
domaine de X, la valeur 1 (qui viole la contrainte : X; # X;) et la valeur 2 (qui viole la
contrainte: 1 - X; # 2 - Xj).

Un tel filtrage permet d'établir ce qu'on appelle la consistance de neeud « node-consistency »,
appelée aussi «1-consistance ». Un CSP (X, D, C) est consistant de nceud si pour toute
variable X; de X, et pour toute valeur v de D;, I'affectation partielle {(X;, v)} satisfait toutes
les contraintes unaires de C.

Un autre filtrage plus fort, mais aussi plus long a effectuer, consiste a anticiper de deux
étapes I'éenumération: pour chaque variable X non affectée dans A, on enleve de D(X) toute
valeur v telle qu'il existe une variable X; non affectée pour laquelle, pour toute valeur w
de D(X;), l'affectation A U {(X, v), (X;, w)} soit inconsistante.

Par exemple pour le probléme des 4 reines, aprés avoir instancié X; & 1, on peut enlever la
valeur 3 du domaine de X; car si X; =1 et X, = 3, alors la variable X3 ne peut plus prendre de
valeurs : si X3 =1, on viole la contrainte X3 # X1, si X3 =2, on viole la contrainte X3 + 3 #
Xo + 2, si X3 =3, on viole la contrainte X3 # X, , et si X3 = 4, on viole la contrainte X3 - 3
X5-2.

Ce filtrage permet d'établir ce qu'on appelle la consistance d'arc «arc-consistency», aussi
appelée «2-consistance». Un CSP (X, D, C) est consistant d'arc si tout couple de variables
(X, Xj) de X, et pour toute valeur v; de D;, il existe une valeur v; appartenant D; telle
que l'affectation partielle {(X;, vi), (X;, vj)} satisfasse toutes les contraintes binaires de C.

Un filtrage encore plus fort, mais aussi encore plus long a effectuer, consiste a anticiper de
trois étapes I'énumération. Ce filtrage permet d'établir ce qu'on appelle la consistance de
chemin « path-consistency », appelée aussi « 3-consistance » et ainsi de suite. Notons que
s'il reste k variables a affecter, et si I'on anticipe de k étapes I’énumération pour établir la
« k-consistance », I'opération de filtrage revient a résoudre le CSP, c'est-a-dire que toutes les
valeurs restant dans les domaines des variables apres un tel filtrage appartiennent a une
solution.

12

= Principe de I'algorithme « anticipation»

Le principe général de l'algorithme «anticipation» reprend celui de I'algorithme « simple
retour-arriere», en ajoutant simplement une étape de filtrage a chaque fois qu'une valeur est
affectée a une variable. Comme on vient de le voir, on peut effectuer différents filtrages plus
ou moins forts, permettant d'établir différents niveaux de consistance locale (nceud, arc,

chemin, . . .).

Ce principe de filtrage est repris dans la fonction récursive «anticipation (A, (X, D, C))»

décrite ci-dessous.

Fonction Anticipation (A, (X, D, C)) : Booléen
Début
Si (A n'estpas consistante) Alors
Retourner faux
Fin Si
Si toutes les variables de X sont affectées Alors
/* A est une affectation totale consistante « une solution » */
Retourner vrai
Sinon /* Aest une affectation partielle consistante */
Choisir une variable X; de X qui n'est pas encore affectée
Pour toute valeur V; € D; Faire
[* filtrage des domaines par rapporta AU (X;, Vi) */
Pour toute variable X; de X qui n'est pas encore affectée Faire
Dj«— {V; €D; I AU{(X, Vi), (X; V))} est consistante}
Si Dj estvide Alors
Retourner faux
FinSi
Fin Pour
Si Anticipation (A U {(X;, Vi)}, (X,D',C)) = vrai Alors
Retourner vrai
FinSi
Fin Pour
Retourner faux
Finsi
Fin

= Exemple de trace d'exécution de « Anticipation»

Considérons de nouveau le probléeme du placement de 4 reines sur un échiquier 4 x 4.
L'enchainement des appels successifs a la fonction « Anticipation/ncecud» peut étre représenté

par l'arbre ci-apres (les valeurs supprimées par le filtrage sont marquées d'une croix).

13

Si on applique un filtrage plus fort, qui rétablit a chaque étape la consistance d'arc,
I'enchainement des appels successifs a la fonction « Anticipation/arc» correspondante est
représenté par I’arbre ci-apres (les valeurs supprimées par le filtrage sont marquées d'une
Croix).

‘-‘-‘-‘-""“—-.._

X 4

Ainsi, on constate sur le probleme des 4 reines que le filtrage des domaines permet de réduire
le nombre d'appels récursifs : on passe de 27 appels pour «simple retour-arriere» a 8 appels
pour l'algorithme d'anticipation avec filtrage simple établissant une consistance de nceud. En
utilisant des filtrages plus forts, comme celui qui établit la consistance d'arc, on peut encore
réduire la combinatoire de 8 a 3 appels récursifs. Cependant, il faut noter que plus le filtrage
utilisé est fort, plus cela prendra de temps pour I'exécuter.

14

