
1 
 

Programmation par Contraintes 

 

 

1 -  Notion de contrainte 

 

Une contrainte est une relation logique établie entre différentes variables, chacune prenant 

sa valeur dans un ensemble qui lui est propre, appelé domaine. 

 

Une contrainte sur un ensemble de variables restreint les valeurs que peuvent prendre 

simultanément ses variables. Elle est déclarative et relationnelle puisqu’elle définit une 

relation entre les variables sans spécifier de procédure opérationnelle pour  assurer cette 

relation.  

Ainsi, lorsqu'on pose la contrainte « 2x1 – x2 = x3 », on ne s'occupe pas de donner un 

algorithme permettant de  la  résoudre.  La connaissance  de  x1  et  x2  nous  donne la valeur  

de x3, de même la connaissance de x2  et  x3  nous  donne la valeur de x1, et même encore la 

connaissance  de  x1  et  x3  nous  donne la valeur  de x2. 

 

Les contraintes varient en fonction des domaines de valeurs des variables et peuvent être 

définies en extension ou en intension : 

 

 Pour définir une contrainte en extension, on énumère les  tuples  de valeurs 

appartenant à la relation. Par exemple, si les domaines des variables x et y contiennent 

les valeurs 0, 1 et 2, alors on peut définir la contrainte « x est plus petit que y » en 

extension par  « (x,y) ∈ {(0,1), (0,2), (1,2)} » 

 

 Une contrainte peut également être définie en intension, on utilise des propriétés 

mathématiques connues. Par exemple : « x+y ≤ 4 »  ou encore « x ≤ 1 => y ≠ 2 » ou 

même par un prédicat portant sur n variables « allDifferent (x1, …, xn) », appelée 

contrainte globale. 

 

1.1 -  Arité d'une contrainte 
 

L'arité d'une contrainte est le nombre de variables sur les quelles elle porte. On dira que la 

contrainte est : 
 unaire si son arité est égale à 1, elle porte sur une seule variable, par exemple « x*x = 

4 » ou encore « est-un-triangle(y) » 

 

 binaire si son arité est égale à 2, elle met en relation 2 variables), par exemple « x ≠ y » 

ou encore « A U B = C » 

 

 ternaire si son arité est égale à 3 (elle met en relation 3 variables, par exemple « x+y < 

3*z-4 » ou encore « (non x) ou y ou z = vrai » 

 

 ...  

 

 n-aire si son arité est égale à n, elle met en relation un ensemble de n variables. Si la 

contrainte porte sur toutes les variables on dira que la contrainte est globale. 
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1.2 - Binarisation des contraintes 

 

D’une façon générale, les contraintes  d’un  CSP  peuvent être  n-aires,  mais on peut toujours 

les exprimer en termes de contraintes  binaires. Ainsi tout  CSP  peut se représenter comme un 

CSP binaire. Un tel  CSP  peut être représenté comme un graphe  de  contraintes 

 

2 -  Problèmes de satisfaction de contraintes 
 

Un CSP (Problème de Satisfaction de Contraintes) est un problème modélisé sous la forme 

d'un ensemble de contraintes posées sur des variables, chacune de ces variables prenant ses 

valeurs dans un domaine. De façon plus formelle, on définira un CSP par un triplet (X, D, 

C) tel que : 
 X = {X1, X2, ..., Xn} est l'ensemble des variables (les inconnues) du problème ; 

 

 D  est la fonction qui associe à chaque variable Xi  son domaine D(Xi), c'est-à-dire 

l'ensemble des valeurs que peut prendre  Xi. 

 

 C = {C1, C2, ..., Ck} est l'ensemble des contraintes. Chaque contrainte Cj est une 

relation entre certaines variables de X, restreignant les valeurs que peuvent prendre 

simultanément  ces variables. Par exemple, on peut définir le CSP (X, D, C) suivant : 

 

 X = {a, b, c, d} 

 D(a) = D(b) = D(c) = D(d) = {0, 1} 

 C = {a ≠ b, c ≠ d, a+c < b} 

 

Ce  CSP comporte 4 variables a, b, c et d, chacune pouvant prendre 2 valeurs (0 ou 1). 

Ces variables doivent respecter les contraintes suivantes : a doit être différente 

de b, c doit être différente de d et la somme de a et c doit être inférieure à b. 

2.1 - Solution d'un CSP 

 

Etant donné  un  CSP (X, D, C), sa résolution consiste à affecter des valeurs aux variables, 

de telle sorte que toutes les contraintes soient satisfaites. On introduit pour cela les notations 

et définitions suivantes : 

 

 On appelle affectation le fait d'instancier certaines variables par des valeurs prises 

dans leurs domaines. On notera A = { (X1, V1), (X2, V2), ..., (Xr, Vr) } l'affectation qui 

instancie la variable X1 par la valeur V1, la variable X2 par la valeur V2, ..., et la 

variable Xr par la valeur Vr. 

 

 Une affectation est dite totale si elle instancie toutes les variables du problème,  elle 

est dite partielle si elle n'en instancie qu'une partie. 

 

 Une affectation  A  viole une contrainte  Ck  si toutes les variables de  Ck  sont 

instanciées dans A, et si la relation définie par  Ck  n'est pas vérifiée pour les valeurs 

des variables de  Ck  définies dans A. 

 

 Une affectation (totale ou partielle) est consistante si elle ne viole aucune contrainte, 

et inconsistante si elle viole une ou plusieurs contraintes. 
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 Une solution est une affectation totale consistante, c’est-à-dire une instanciation de 

toutes les variables du problème qui ne viole aucune contrainte. 

 

 Exemple 

X = {X1,  X2,  X3,  X4} 

D = {D1,  D2,  D3,  D4}   avec   D1 = D2 = D3 = D4 = {0,  1} 

C = {X1 ≠ X2,  X3 ≠ X4,  X1 + X3 < X2} 

 

Une affectation partielle : A = {(X1,  0),  (X2,  0)} 

Une affectation totale : A = {(X1,  0),  (X2,  0),  (X3,  0),  (X4,  0)} 

Une affectation consistante : A = {(X3,  0),  (X4,  1)} 

Une affectation inconsistante : A = {(X1,  0),  (X2,  0)} 

Une solution :   A = {(X1,  0),  (X2,  1),  (X3,  0),  (X4,  1)} 
 

2.2 - CSP surcontraint ou souscontraint 

Lorsqu'un CSP n'a pas de solution, on dit qu'il est  surcontraint : il y a trop de contraintes et 

on ne peut pas toutes les satisfaire. Dans ce cas, on peut souhaiter trouver l'affectation totale 

qui viole le moins de contraintes possibles. Un tel CSP est appelé max-CSP (max car on 

cherche à maximiser le nombre de contraintes satisfaites). 

Une autre possibilité est d'affecter un poids à chaque contrainte (une valeur proportionnelle à 

l'importance de cette contrainte, et de chercher l'affectation totale qui minimise la somme des 

poids des contraintes violées. Un tel CSP est appelé CSP valué (VCSP). 

Il existe encore d'autre types de CSPs, appelés CSPs basés sur les semi-anneaux (semiring 

based CSPs), permettant de définir plus finement des préférences entre les contraintes. 

Inversement, lorsqu'un CSP admet beaucoup de solutions différentes, on dit qu'il est sous-

contraint. Si les différentes solutions ne sont pas toutes équivalentes, dans le sens où certaines 

sont mieux que d'autres, on peut exprimer des préférences entre les différentes solutions. Pour 

cela, on ajoute une fonction qui associe une valeur numérique à chaque solution, valeur 

dépendante de la qualité de cette solution. L'objectif est alors de trouver la solution du CSP 

qui maximise cette fonction. Un tel CSP est appelé CSOP (Constraint Satisfaction 

Optimisation Problem). 

3 - Exemple 

 

3.1 - Description du problème 

Il s'agit de placer 4 reines sur un échiquier comportant 4 lignes et 4 colonnes, de manière à 

ce qu'aucune reine ne soit en prise. On rappelle que 2 reines sont en prise si elles se trouvent 

sur une même diagonale, une même ligne ou une même colonne de l'échiquier. 

 

3.2 - Modélisation sous la forme d'un CSP 

 

Pour modéliser un problème sous la forme d'un CSP, il faut identifier : 

 L'ensemble des variables X   (les inconnues du problème), 
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 La fonction D qui associe à chaque variable de X son domaine  (les valeurs que la 

variable peut prendre), 

 Les contraintes  C  entre les variables.  

 

Notons qu'à ce niveau, on cherche simplement une spécification formelle du 

problème, sans savoir comment le résoudre. Un même problème peut généralement 

être modélisé par différents CSPs. Le choix d’une modélisation peut avoir une 

influence sur l'efficacité de la résolution. 

 

 Première modélisation 

Les "inconnues" du problème sont les positions  des reines  sur  l'échiquier. En 

numérotant les lignes et les colonnes de l'échiquier de la façon suivante : 

               
 

On peut déterminer la position d'une reine par un numéro de ligne et un numéro de 

colonne. Ainsi, une première modélisation consiste à associer à chaque reine i deux 

variables Li et Ci correspondant respectivement à la ligne et la colonne sur laquelle 

placer la reine. Les contraintes spécifient alors que les reines doivent être sur des 

lignes différentes, des colonnes différentes et des diagonales différentes. Notons pour 

cela que lorsque 2 reines sont sur une même diagonale montante, la somme de leurs 

numéros de ligne et de colonne est égale, tandis que lorsqu'elles sont sur une même 

diagonale descendante, la différence de leurs numéros de ligne et de colonne est égale. 

On en déduit le CSP suivant : 

 Variables : 

    X = {L1, L2, L3, L4, C1, C2, C3, C4} 

 Domaines : 

    D(L1) = D(L2) = D(L3) = D(L4) = D(C1) = D(C2) = D(C3) = D(C4) = {1, 2, 3, 4} 

 Contraintes : on identifie 4 types de contraintes 

o Les reines doivent être sur des lignes différentes : 

     Clig  = {L1  ≠  L2,  L1  ≠  L3,  L1  ≠ L4,  L2  ≠  L3,  L2  ≠ L4,  L3  ≠  L4 } 

o Les reines doivent être sur des colonnes différentes : 

   Ccol  = {C1  ≠  C2, C1  ≠  C3, C1  ≠  C4, C2  ≠  C3, C2  ≠  C4, C3  ≠  C4 } 

o Les reines doivent être sur des diagonales montantes différentes : 

     Cdm = {C1 + L1 ≠ C2 + L2,  C1 + L1 ≠ C3 + L3,  C1 + L1 ≠ C4 + L4,                  

C2 + L2 ≠ C3 + L3, C2 + L2 ≠ C4 + L4, C3 + L3 ≠ C4 + L4} 

o Les reines doivent être sur des diagonales descendantes différentes : 

     Cdd = {C1 - L1  ≠  C2 - L2,  C1 - L1  ≠  C3 - L3,  C1 - L1  ≠  C4 - L4,                       

C2 - L2  ≠  C3 - L3,  C2 - L2  ≠  C4 - L4,  C3 - L3  ≠  C4 - L4} 

L'ensemble des contraintes est défini par l'union de ces 4 ensembles : 

      C = Clig  U Ccol  U Cdm  U Cdd  

 

Les contraintes  Clig  et  Ccol  sont des contraintes binaires ; les contraintes Cdm  et Cdd 

sont des contraintes quaternaires. L'énumération de toutes ces contraintes est ici un 

peu fastidieuse. On peut tout aussi bien les définir de la façon suivante : 
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 Contraintes : 

o les reines doivent être sur des lignes différentes : 

Clig  = {Li  ≠  Lj /  i  ∈  {1,2,3,4},  j  ∈  {1,2,3,4}  et  i ≠ j} 

o les reines doivent être sur des colonnes différentes : 

Ccol  = {Ci  ≠  Cj / i  ∈  {1,2,3,4},  j  ∈  {1,2,3,4}  et  i ≠ j} 

o les reines doivent être sur des diagonales montantes différentes : 

Cdm  = {Ci+Li  ≠  Cj+Lj / i  ∈  {1,2,3,4},  j  ∈  {1,2,3,4}  et  i ≠ j} 

o les reines doivent être sur des diagonales descendantes différentes : 

Cdd  = {Ci-Li  ≠  Cj-Lj / i  ∈  {1,2,3,4},  j  ∈  {1,2,3,4}  et  i ≠ j} 

 

On aurait également pu utiliser une contrainte globale pour exprimer le fait que toutes 

les variables d'un ensemble doivent avoir des valeurs différentes :  

         Clig = toutesDiff({L1, L2, L3, L4})     et    Ccol = toutesDiff({C1, C2, C3, C4}). 

 

Une solution du problème des 4 reines, pour cette première modélisation, est 

A = {(C1, 1), (L1, 2), (C2, 2), (L2, 4), (C3, 3), (L3, 1), (C4, 4), (L4, 3)},   autrement dit, la 

première reine est placée colonne 1 ligne 2, la deuxième, colonne 2 ligne 4, la 

troisième, colonne 3 ligne 1 et la quatrième, colonne 4 ligne 3. 

 

 

 Deuxième modélisation 

 

Dans la mesure où l'on sait dès le départ qu'il y aura une reine et une seule sur chaque 

colonne de l'échiquier, le problème peut se résumer à déterminer sur quelle ligne se 

trouve la reine placée sur la colonne i. Par conséquent, une deuxième modélisation 

consiste à associer une variable Xi  à chaque colonne i de telle sorte que Xi  désigne le 

numéro de ligne sur laquelle placer la reine de la colonne i. Notons que pour cette 

deuxième modélisation, on a été obligé de « réfléchir » un peu pour introduire dans la 

modélisation une déduction (il y a une seule reine par colonne) qui, on l'espère, va 

faciliter le travail de la machine. Le CSP correspondant à cette deuxième modélisation 

est le suivant : 

 

 Variables : 

    X = {X1, X2, X3, X4} 

 Domaines : 

    D(X1) = D(X2) = D(X3) = D(X4) = {1, 2, 3, 4} 

 Contraintes : 

o les reines doivent être sur des lignes différentes : 

    Clig = {Xi  ≠  Xj / i  ∈  {1,2,3,4}, j  ∈  {1,2,3,4}  et  i ≠ j} 

o les reines doivent être sur des diagonales montantes différentes : 

    Cdm = {Xi + i  ≠  Xj + j / i  ∈  {1,2,3,4}, j  ∈  {1,2,3,4}  et  i ≠ j} 

o les reines doivent être sur des diagonales descendantes différentes : 

    Cdd = {Xi - i  ≠  Xj - j / i  ∈  {1,2,3,4}, j  ∈  {1,2,3,4}  et  i ≠ j} 

 

L'ensemble des contraintes est défini par l'union de ces 3 ensembles : 

    C = Clig U Cdm U Cdd 

 

               Une solution du problème des 4 reines, pour cette deuxième modélisation, est : 

                   A = {(X1, 2), (X2, 4), (X3, 1), (X4, 3)}   
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C’est-à-dire, la reine de la colonne 1 est placée sur la ligne 2, celle de la colonne 2, 

ligne 4, celle de la colonne 3, ligne 1 et celle de la colonne 4, ligne 3. 

 

 

 Troisième modélisation 

 

Une autre façon, radicalement opposée, de modéliser le problème consiste à choisir 

comme variables non pas les positions des reines, mais les états des cases de l'échiquier 

: on associe une variable à chacune des 16 cases de l'échiquier (on notera Xij la variable 

associée à la case située ligne i et colonne j), chaque variable peut prendre pour 

valeur 0 (absence de reine sur la case) ou 1 (présence de reine sur la case), les 

contraintes spécifient qu'il ne peut y avoir plusieurs reines sur une même ligne, une 

même colonne ou une même diagonale. Le CSP correspondant à cette troisième 

modélisation est le suivant : 

 

 Variables : 

X = {X11, X12, X13, X14, X21, X22, X23, X24, X31, X32, X33, X34, X41, X42, X43, X44} 

 Domaines : 

D(Xij) = {0, 1} pour tout i et tout j compris entre 1 et 4 

 Contraintes : 

o  Il y a une reine par ligne 

Clig = {Xi1 + Xi2 + Xi3 + Xi4 = 1 / i  ∈  {1, 2, 3,4}} 

o  Il y a une reine par colonne 

Ccol = {X1i + X2i + X3i + X4i = 1 / i  ∈  {1, 2, 3,4}} 

o  Les reines doivent être sur des diagonales montantes différentes 

Cdm = pour tout couple de variables différentes  Xi j  et  Xk l,  i + j = k+l  ⇒  Xi j + 

Xk l  ≤  1 

o  Les reines doivent être sur des diagonales descendantes différentes 

Cdd = pour tout couple de variables différentes  Xi j  et  Xk l,  i - j=k - l  ⇒ Xi j  + 

Xk l  ≤  1 

 

L'ensemble des contraintes est défini par l'union de ces 4 ensembles 

C = Clig  U Ccol  U Cdm  U Cdd  

 

Une solution du problème des 4 reines, pour cette troisième modélisation, est : 

A = {(X11, 0), (X12, 1), (X13, 0), (X14, 0), (X21, 0), (X22, 0), (X23, 0), (X24, 1), (X31, 1), 

(X32, 0), (X33, 0), (X34, 0), (X41, 0), (X42, 0), (X43, 1), (X44, 0)} 

 

C’est-à-dire, la case ligne 1 colonne 1 (X11) est vide, la case ligne 1 colonne 2 (X12) est 

occupée, ... 

 

 

 Choix d’une modélisation 

 

La question (légitime) que l'on peut maintenant se poser est la suivante: « Quelle est la 

meilleure modélisation ? » 

Pour répondre à cette question on peut envisager plusieurs cas : 

 

1. Celle qui modélise le mieux la réalité du problème. De ce point de vue, les 3 

modélisations sont équivalentes. 
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2. Celle qui est la plus facile à trouver. De ce point de vue, la première modélisation 

est probablement plus "simple"... même si cela est subjectif ! 

3. Celle qui permettra de résoudre le problème le plus efficacement. On ne peut 

vraiment répondre à cette question qu'à partir du moment où l'on sait comment un 

CSP est résolu. Intuitivement, on se doute que la deuxième modélisation devrait 

être meilleure que la première dans la mesure où elle prend en compte le fait que les 

reines sont sur des colonnes différentes par la définition même des variables, sans 

avoir à poser de contrainte. On verra que « l'espace de recherche » de cette 

deuxième modélisation est plus petit que celui de la première. 

 

 

 Généralisation à n reines 

 

On peut généraliser le problème au placement de n reines sur un échiquier 

comportant n colonnes et n lignes. Par exemple, la deuxième modélisation devient : 

 

 Variables : 

X = {Xi / i  est un entier compris entre  1 et  n } 

 Domaines : 

Quelque soit  Xi  ∈ X,  D(Xi) = {j / j est un entier compris entre 1 et n} 

 Contraintes : 

o les reines doivent être sur des lignes différentes : 

Clig = {Xi  ≠  Xj  / i et j  sont 2 entiers différents compris entre 1  et  n} 

o les reines doivent être sur des diagonales montantes différentes : 

 Cdm = {Xi + i  ≠  Xj + j  / i et j  sont 2 entiers différents compris entre 1  et  n} 

o les reines doivent être sur des diagonales descendantes différentes : 

 Cdd = {Xi - i  ≠  Xj - j  / i et j  sont 2 entiers différents compris entre 1  et  n} 

 

L'ensemble des contraintes est défini par l'union de ces 3 ensembles : 

   C = Clig U Cdm U Cdd 

 

4 - Résolution des CSPs 

Après la phase de modélisation, on va maintenant étudier quelques algorithmes permettant 

de résoudre, de façon générique, certains de ces CSPs. On se restreindra aux CSPs sur les 

domaines finis, c'est-à-dire, les CSPs  dont les domaines des variables sont des ensembles 

finis de valeurs. Le point commun  à tous les algorithmes que nous allons étudier est 

d'explorer méthodiquement l'ensemble des affectations possibles jusqu'à, soit trouver une 

solution (quand le CSP est consistant), soit démontrer qu'il n'existe pas de solution (quand le 

CSP est inconsistant). 

4.1 - L'algorithme  « génère et teste » 

 Principe de l'algorithme 

 

Il s’agit d’une recherche systématique d'une solution : 

 Génération d'une  affectation totale 

 Test de la satisfaction de toutes les contraintes 
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La façon la plus simple (très naïve !) de résoudre un CSP sur les domaines finis consiste à 

énumérer toutes les affectations totales possibles jusqu'à en trouver une qui satisfasse toutes 

les contraintes.  

Ce principe est repris dans la fonction récursive  « GenereEtTeste(A, (X, D, C) ) » décrite 

ci-dessous. Dans cette fonction, A contient une affectation partielle et (X, D, C)  décrit le CSP 

à résoudre. Au départ, l'affectation partielle A sera vide, la fonction retourne  vrai  si on peut 

étendre l'affectation partielle A en une affectation totale consistante (une solution)  et  faux 

sinon. 

Fonction     GenereEtTeste( A,  (X, D, C) ) : Booléen 

     /*     (X, D, C)  =  un CSP  sur  les  domaines finis        */ 

     /*     A  =  une affectation  partielle  pour  (X, D, C)     */ 

Début 
     Si   (toutes les variables de  X  se trouvent dans  A)  Alors   /* A est une affectation totale*/ 

           Si         (A   est consistante)     Alors       /*  A  est une solution   */ 

                  Retourner    vrai 

            Sinon 
                  Retourner    faux 

            Fin Si 
     Sinon              /*   A est une affectation partielle  */ 

           Choisir une variable  Xi  de  X,  non  affectée à une valeur dans  A   

           Pour    toute valeur   Vj   ∈  D(Xi)          Faire 

                    Si      (GénèreEtTeste( A U (Xi , Vj ),   (X, D, C)) = vrai )       Alors 

                            Retourner      vrai 

                     Fin Si 

            Fin Pour 
            Retourner    faux 

     Fin Si 

Fin 
 

 

 Exemple de trace d'exécution de « GenereEtTeste» 
 

Considérons par exemple  le  CSP (X,  D,  C) suivant : 

 X = {a,  b,  c,  d} 

 D(a) = D(b) = D(c) = D(d) = {0, 1} 

 C = {a ≠ b,  c ≠ d,  a + c < b} 

L'enchainement des appels successifs à la fonction GenereEtTeste (abrégée par GET) est 

représenté ci-dessous  (chaque rectangle correspond à un appel de la fonction, et précise la 

valeur de l'affectation partielle en cours de construction A). 
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4.2 - Espace de recherche d'un CSP 

On appelle « Espace de recherche d’un CSP », L'ensemble de toutes les affectations 

complètes  possibles.    

Pour un CSP (X, D, C)  où  X = {X1, X2, ..., Xn})  et  D= {D(X1),  D(X2) ,…,  D(Xn)} , la 

taille de l’espace de recherche  est défini par : 

|E| = |D(X1)| * |D(X2)| * ... * |D(Xn)| 

 

Ainsi, si tous les domaines des variables sont de  taille k  (|D(Xi)| = k), alors la taille de 

l'espace de recherche devient : |E| = k
n
,  Donc, le nombre d'affectations que « GenereEtTeste» 

génère croit de façon exponentielle en fonction du nombre de variables du problème. Dans le 

pire des cas, si n est grand c’est l’explosion combinatoire !, 

 

 

 Quelques idées pour améliorer  « génère et teste » 

Dans le cas où le nombre de variables est élevé, il est déconseillé d’appliquer bêtement 

l'algorithme « génère et teste ». Il faut donc chercher à réduire au tant que possible  l'espace 

de recherche: 

 Ne développer que les affectations partielles consistantes : dès lors qu'une affectation 

partielle est inconsistante, il est inutile de chercher à l'étendre en une affectation totale 

puisque celle-ci sera nécessairement inconsistante. 
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 Réduire les tailles des domaines des variables en leur enlevant les valeurs 

« incompatibles » : pendant la génération d'affectations, on filtre le domaine des 

variables pour ne garder que les valeurs  « localement consistantes »  avec l'affectation 

en cours de construction, et dès lors que le domaine d'une variable devient vide, on 

arrête l'énumération pour cette affectation partielle. 

 

 Introduire des « heuristiques » pour guider la recherche : lorsqu'on énumère les 

affectations possibles, on peut essayer d'énumérer en premier celles qui sont les plus 

« prometteuses », en espérant ainsi tomber rapidement sur une solution. 

 

 Lors d'un échec, on peut essayer d'identifier la cause de l'échec (quelle est la variable 

qui viole une contrainte) pour ensuite « retourner en arrière » directement là où cette 

variable a été instanciée afin de remettre en cause plus rapidement la variable à 

l'origine de l’échec. C'est ce que l'on appelle le « retour arrière intelligent » (intelligent 

backtracking). 

 

 Une autre approche particulièrement séduisante consiste à exploiter des connaissances 

sur les types de contraintes utilisées pour réduire l'espace de recherche. considérons 

par exemple le CSP (X, D, C) suivant : 

- X={a, b, c}, 

- D(a)=D(b)=D(c)={0,1,2,3,4, ..., 10000}, 

- C={4*a - 2*b = 6*c + 3} 

L'espace de recherche de ce CSP comporte 1000 milliard d'affectations. Pour résoudre 

ce CSP, on peut énumérer toutes ces combinaisons, en espérant de trouver une qui 

satisfasse la contrainte 4*a - 2*b = 6*c + 3. En revanche un simple raisonnement 

permet de conclure très rapidement que ce CSP n'a pas de solution. En effet, la partie 

gauche de l'équation donne  toujours un nombre pair, et celle de la droite donne 

toujours un  nombre impair !. 

 

4.3 - L'algorithme « simple retour-arrière» 

 

 Principe de l'algorithme 

 

Une première idée d'améliorer l'algorithme « génère et teste» c’est de tester la consistance  de 

l'affectation partielle au fur et à mesure de sa construction. En effet si une affectation partielle 

est inconsistante, il est impossible de trouver une solution dans cette branche.  Dans ce cas, 

pour continuer la recherche on fait un « backtrack », c’est-à-dire  un retour en arrière   jusqu'à 

la plus récente instanciation partielle consistante. 

 

Par exemple, sur la trace d'exécution  de « GenereEtTeste»,  décrite ci-dessus, on remarque que 

l'algorithme génère toutes les affectations totales inconsistantes après l’affectation  partielle A 

= {(a, 0), (b, 0)} qui viole la contrainte {a ≠ b}. L'algorithme « simple retour-arrière»  va faire 

un « backtrack »  pour choisir une autre valeur pour  b. 

 

Ce principe est repris dans la fonction récursive « SimpleRetourArrière( A, (X, D, C) ) » 

décrite ci-dessous.  
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Fonction   SimpleRetourArrière(  A,  (X,  D,  C) ) : Booléen 

Début 
    Si     (A   n'est pas   consistante)      Alors 

           Retourner faux 

    Fin Si 
    Si   (toutes les variables de  X  sont  instanciées  dans   A)      Alors 

          /*   A est une affectation totale  et  consistante  « une solution »   */ 

          Retourner    vrai 

     Sinon     /*   A est une affectation  partielle  consistante  */ 

         Choisir une variable  Xi   de  X   qui n'est pas encore instanciée dans  A  

         Pour     toute valeur   Vj   ∈   D(Xi)      Faire 

              Si      (simpleRetourArrière( A U (Xi , Vj),    (X,  D,  C) )  =  vrai)      Alors 

                       Retourner   vrai 

             Fin Si 

        Fin Pour 
        Retourner   faux 

     Fin Si 

Fin 
 

 

 Exemple de trace d'exécution  de  « SimpleRetourArrière » 
 

Reprenons le problème des 4 reines : 

 

 Variables : X = {X1, X2 X3, X4} 

 

 Domaines : D(X1) = D(X2) = D(X3) = D(X4) = {1, 2, 3, 4} 

 

 Contraintes : C = {Xi  ≠  Xj | i ∈ {1, 2,3, 4},  j ∈ {1, 2,3, 4}  et  i ≠ j} U {Xi + i  ≠  Xj + j |  i ∈ 
{1,2,3,4},  j ∈{1,2,3,4}  et  i ≠ j } U {Xi - i  ≠  Xj - j |  i ∈{1,2,3,4},  j ∈{1,2,3,4}  et  i  ≠  j}  

 

L'enchainement des appels successifs à la fonction  SimpleRetourArrière  peut être représenté 

par l'arbre ci-dessous (chaque nœud correspond à un appel de la fonction, l'échiquier dessiné à 

chaque nœud décrit l'affectation partielle en cours) 

 

 

         



12 
 

 4.4 - L'algorithme « anticipation» 

 

 Notions de filtrage et de consistance locale 
 

Pour améliorer l'algorithme « simple retour-arrière», dès qu’une nouvelle variable est 

instanciée, on va supprimer des domaines des variables non encore instanciées les valeurs qui 

ne sont pas compatibles avec la valeur choisie, il s’agit d’une anticipation. 

 

Pour mettre ce principe en œuvre, on va, à chaque étape de la recherche, filtrer les domaines 

des variables non affectées en enlevant les valeurs « localement inconsistantes», c'est-à-dire 

celles dont on peut inférer qu'elles n'appartiendront à aucune solution.  

 

Considérons un CSP (X, D, C), et une affectation partielle consistante A. 

 

Le filtrage le plus simple consiste à anticiper  d'une étape l'énumération:  pour chaque 

variable  X  non affectée dans  A, on enlève de  D(X)  toute valeur  v  telle que  l'affectation 

A U {(X, v)} soit inconsistante. 

 

 Par exemple pour le problème des 4 reines, après avoir instancié X1 à 1, on peut enlever du 

domaine de X2 la valeur 1 (qui viole la contrainte : X1 ≠  X2) et la valeur 2 (qui viole la 

contrainte : 1 - X1  ≠  2 - X2). 

 

Un tel filtrage permet d'établir ce qu'on appelle la  consistance de nœud  « node-consistency », 

 appelée aussi  «1-consistance ». Un CSP (X, D, C) est consistant de nœud si pour toute 

variable  Xi  de X,  et pour toute valeur  v  de Di, l'affectation partielle {(Xi,  v)} satisfait toutes 

les contraintes unaires de C. 

 

Un autre filtrage plus fort,  mais aussi plus long à effectuer, consiste à anticiper de deux 

étapes l'énumération:  pour chaque variable  X  non affectée dans  A, on enlève de D(X) toute 

valeur  v  telle qu'il existe une variable  Xj  non affectée  pour laquelle,  pour toute valeur  w  

de D(Xj), l'affectation  A U {(X, v), (Xj, w)}   soit inconsistante. 

 

Par exemple pour le problème des 4 reines, après avoir instancié X1 à 1, on peut enlever la 

valeur 3 du domaine de X2 car  si X1 = 1 et X2 = 3, alors la variable X3 ne peut plus prendre de 

valeurs :  si  X3 = 1, on viole la contrainte X3 ≠ X1 ,  si X3 = 2, on viole la contrainte X3 + 3  ≠ 

 X2 + 2 , si X3 = 3, on viole la contrainte X3  ≠  X2 , et  si X3 = 4, on viole la contrainte X3 - 3 

 ≠  X2 - 2. 

 

Ce filtrage permet d'établir ce qu'on appelle la consistance d'arc «arc-consistency», aussi 

appelée «2-consistance». Un  CSP (X, D, C) est consistant d'arc si tout couple de variables 

(Xi,  Xj )  de X,  et  pour toute valeur  vi  de  Di, il existe une valeur  vj  appartenant  Dj  telle 

que l'affectation partielle {(Xi, vi ),  (Xj, vj )} satisfasse toutes les contraintes binaires de C. 

 

Un filtrage encore plus fort, mais aussi encore plus long à effectuer, consiste à anticiper de 

trois étapes l'énumération. Ce filtrage permet d'établir ce qu'on appelle la consistance de 

chemin  « path-consistency », appelée aussi  « 3-consistance »  et ainsi de suite. Notons que 

s'il reste  k  variables à affecter, et si l'on anticipe de  k  étapes  l’énumération pour établir la  

« k-consistance », l'opération de filtrage revient à résoudre le  CSP, c'est-à-dire que toutes les 

valeurs restant dans les domaines des variables après un tel filtrage appartiennent à une 

solution. 



13 
 

 Principe de l'algorithme « anticipation» 
 

Le principe général de l'algorithme « anticipation» reprend celui de l'algorithme « simple 

retour-arrière», en ajoutant simplement une étape de filtrage à chaque fois qu'une  valeur est 

affectée à  une variable. Comme on vient de  le voir, on peut effectuer différents  filtrages plus 

ou moins forts, permettant d'établir différents niveaux de consistance locale (nœud, arc, 

chemin, . . .). 

 

Ce principe de filtrage  est repris dans la fonction récursive « anticipation (A, (X, D, C))»  

décrite ci-dessous. 

 

Fonction   Anticipation (A, (X, D, C)) : Booléen 

  Début 

      Si     (A   n'est pas   consistante)      Alors 

              Retourner   faux 

       Fin Si 
      Si   toutes les variables de  X  sont affectées    Alors 

               /*   A est une affectation totale  consistante  « une solution »  */ 

            Retourner  vrai 

       Sinon       /*   A est une affectation partielle consistante   */ 

           Choisir une variable Xi  de X qui n'est pas encore affectée 

           Pour    toute valeur Vi  ∈  Di              Faire 

                /*     filtrage des domaines par rapport à   A U (Xi, Vi)    */ 

                Pour    toute variable  Xj  de  X  qui n'est pas encore affectée     Faire 

                      D
’
j ← {Vj  ∈  Dj  /   A U {(Xi, Vi),  (Xj, Vj)}  est consistante} 

                      Si     D
’
j   est vide       Alors 

                              Retourner   faux 

                       FinSi 

                 Fin Pour 

                 Si     Anticipation ( A U {(Xi, Vi )},  (X, D', C) )  =  vrai      Alors 

                        Retourner  vrai 

                 FinSi 

            Fin Pour 

            Retourner   faux 

        Finsi 

    Fin 

 

 

 Exemple de trace d'exécution  de  « Anticipation» 
Considérons de nouveau le problème du placement de 4 reines sur un échiquier 4 x 4. 

L'enchainement des appels successifs à la fonction « Anticipation/nœud» peut être représenté 

par l'arbre ci-après (les valeurs supprimées par le filtrage sont marquées d'une croix). 
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Si on applique un filtrage plus fort, qui rétablit à chaque étape la consistance d'arc, 

l'enchainement des appels successifs à la fonction « Anticipation/arc» correspondante  est 

représenté par l’arbre ci-après (les valeurs supprimées par le filtrage sont marquées d'une 

croix). 

                                                   
 

Ainsi, on constate sur le problème des 4 reines que le filtrage des domaines permet de réduire 

le nombre d'appels récursifs : on passe de 27 appels pour «simple retour-arrière» à 8 appels 

pour  l'algorithme d'anticipation avec filtrage simple  établissant une consistance de nœud. En 

utilisant des filtrages plus forts, comme celui qui établit la consistance d'arc, on peut encore 

réduire la combinatoire de 8 à 3 appels récursifs. Cependant, il faut noter que plus le filtrage 

utilisé est fort, plus cela prendra de temps pour l'exécuter. 

 

 

 

 


