
Mohamed Seddik Benyahia University of Jijel Academic Year: 2025/2026
FSEI/Computer Science Department Course: Compilation
Level : 3rd year/BSc in Computer Science Chapter 4: Top-Down Parsing

1

Chapter 04: Top-Down Parsing (Part 03)

Introduction
1. Description of Top-Down Parsing
2. Predictive Parsing (LL(1) Parsing)
2.1. Requirements for LL(1) Parsing
2.2. Constructing FIRST and FOLLOW sets
2.3. Constructing the Predictive Parsing Table
2.4. LL(1) Grammar
2.5. Input Parsing

3.Recursive Descent Parsing

In its fundamental form, a recursive-descent parser consists of a collection of mutually

recursive procedures, each designed to recognize a specific syntactic construct defined by the

grammar’s production rules. For each non-terminal � in the grammar, there exists a corresponding

procedure that attempts to recognize strings derivable from � . When a procedure is invoked, it

examines the current input symbol (lookahead) to determine which alternative of the corresponding

production rule should be applied.

The parsing process accommodates different types of grammar rules through specific implementation

patterns:

 For alternative productions (� → �|�), the procedure employs conditional statements based on

the lookahead symbol to select the appropriate alternative.

 For sequential productions (� → ���), the procedure makes sequential calls to the procedures

for �, �, and �.

 For optional elements (� → �|�), the procedure includes conditional logic to determine whether

to process � or skip it entirely.

 For repetitive elements (� → ��|�), the procedure implements iterative constructs to handle

multiple occurrences of �.

2

A crucial requirement for recursive-descent parsing is that the grammar must be LL(1)-

compliant, meaning it must be free from left recursion and left factored appropriately. This ensures

that the parser can make correct decisions about which production to apply based solely on the

current input symbol, without requiring backtracking.

Example : Consider the previous LL(1) grammar :
E →TE’
E’→+TE’ | �
T→FT’
T’→*FT’ | �
F →id | const | (E)
The recursive descent algorithm for this grammar can be implemented as follows :

Let :

input : string // array of input characters (tokens)

i: integer // current position in input

current_token : character // current character

i ← 0; // current position initialized to 0

procedure match(expected_terminal)
if current_token == expected_terminal

i ← i+1
if (i<length(input))
current_token ← input[i]

else
current_token ← ‘$’

else
report error: "Expected " + expected_terminal + ", found " +

current_token

procedure E
call T
call E’

procedure E’
if current_token == '+'

match('+')
call T
call E’

else
// do nothing — ε-production

3

procedure T
call F
call T’

procedure T’
if current_token == '*'

match('*')
call F
call T’

else
// do nothing — ε-production

procedure F
if current_token == 'id'

match('id')
else if current_token == 'const'

match('const')
else if current_token == '('

match('(')
call E
match(')')

else
report error: "Expected id, const, or ("

procedure Main
Read (input)
current_token ← input[0]
call E

if current_token == '$'
print "Parsing succeeded."

else
report error: "Unexpected input after valid expression."

Let’s parse the input string : id + id * id

Parsing Input: "id + id * id$"

Initialization: current_token= 'id'

 As mentioned in the Main function, the procedure E is firstly called :
E_____T ____ F → 'id' matched, current_token = '+'
| | ____ T’→ no match, do nothing

4

|
|_____ E’ ____ + → '+' matched, current_token = 'id'

| ____ T _____ F → 'id' matched, current_token = '*'
| _____ T’ _____ * → '*' matched, current_token = 'id'
| | _____ F → 'id' matched, current_token = '$'
| | _____ T’→ no match, do nothing

|
E’→ no match,do nothing

 By exiting the procedure E, condition current_token = '$' is verified → "Parsing
succeeded."

