Mohamed Seddik Benyahia University of Jijel Academic Year: 2025/2026
FSEl/Computer Science Department Course: Compilation
Level : 3™ year/BSc in Computer Science Chapter 5: Bottom-Up Parsing

Chapter 05: Bottom-Up Parsing

Introduction

Bottom-up parsing is a fundamental approach in syntax analysis that constructs the parse tree
from the input tokens up to the start symbol. This chapter introduces the principles of LR parsing and
explores its main variants: LR(0), SLR(1), LR(1), and LALR(1).

1. Definition

Bottom-up parsing is a syntax analysis technique that builds a parse tree from the leaves (input
tokens) up to the root (start symbol) of the grammar. It attempts to reconstruct the rightmost
derivation in reverse, using a process called reduction: it repeatedly replaces sub-strings of the
input that match the right-hand side of a grammar production with the corresponding left-hand side
non-terminal. This process continues until the entire input is reduced to the start symbol or an error is

detected.

Example : Consider the grammar:

S — aABe
A — Abc|b
B—d

Let’s derive ‘abbcde’ using rightmost derivation :

S aABe
aAde
aAbcde
abbcde

Bottom-up parsing aims to reverse these steps, finding the right-hand side of a production in the
current string and replacing it with the left-hand side. In other words, it starts from the input string
and reduce handles (i.e. matches of right-hand sides of rules) in the reverse order of a rightmost

derivation until you get S.

The string “abbcde” can be reduced to “S” as follows :

2.

abbcde

aAbcde (replace b by A using A — b)
aAde (replace Abc by A using A — Abc)
aABe (replace d by B using B — d)

S (replace aABe by S using S — aABe)

%
A A B A B
A A Aﬁ\ A
abbcde abbcde abbcde abbcde a b becd e

Figure 1. Parse Tree of the Input String : abbcde

Bottom-Up Parsing Process

The core of bottom-up parsing, particularly shift-reduce parsing, involves using a stack to store

processed symbols and an input buffer for remaining tokens. The parser operates by repeatedly

choosing between two fundamental actions: shift and reduce.

The bottom-up parsing process follows these steps:

1)
2)
3)

4)
S)

3.

Scan: Read input tokens from left to right

Shift: Push tokens onto a stack

Reduce: When the top of the stack matches the right-hand side of a production rule, replace it
with the left-hand side non-terminal

Accept: When the stack contains only the start symbol and input is exhausted

Error: When no valid shift or reduce action is possible

General Algorithm

A general shift-reduce parser operates as follows:

Initialize stack as empty
Append $ to end of input string | , 3...
Repeat
If top of stack matches handle in some production - then
Pop from stack
Push onto stack
Else if input is not empty then
Shift next input symbol onto stack
Else

Report error and halt

Until stack ==[] and input==$

Note : A handle is sub-string of the input that matches the right-hand side of a some production

- and whose reduction represents one step in the reverse derivation of the input string.

Example : Consider the previous grammar. Let’s trace the parsing process for the input string

“abbcde”:
Stack Input Action
S abbcdes shift a
Sa bbcde$ shift b
Sab bcde$ reduce by A - b
SaA bcdes shift b
$aAb cdes$ shift c
SalAbc de$ reduce by A - Abc
SaA de$ shift d
SaAd e$ reduce by B - d
SaAB es shift e
SaABe S reduce by S — aABe
$S $ accept

4. Types of Bottom-Up Parsers

The primary challenge for bottom-up parsers lies in deterministically deciding which action to

take at each step. This leads to potential conflicts:

¢ Shift/Reduce Conflicts: When the parser cannot decide whether to shift the next token or
reduce the current stack contents.

¢ Reduce/Reduce Conflicts: When multiple production rules could apply for reduction.

These challenges are addressed by different types of bottom-up parsers, which vary in their parsing
table construction and lookahead capabilities. Key types include:
1) Operator-Precedence Parsers : A simpler bottom-up method for operator grammars, using
precedence rules.
2) LR Parsers (Left-to-right, Rightmost derivation) : A powerful family of parsers that use state
machines and lookahead :
e LR(0) : The simplest form, but limited in practical use due to lack of lookahead.
e SLR (Simple LR) : Improves LR(0) by using follow sets for conflict resolution.
e CLR (Canonical LR) : More precise than SLR but requires larger parsing tables.
e LALR (Look-Ahead LR) : Balances power and efficiency, widely used in parser

generators (e.g., Yacc/Bison).

Operator
I [| |
[LR(0) J[SLR(1) j[LALR(1) J[CLR(1))

Figure 2. Types of Bottom-Up Parsers

5. LR Parsing

LR parsing is a deterministic bottom-up parsing technique for context-free grammars that
reads input Left-to-right (L) and produces a Rightmost derivation (R) in reverse. It systematically
constructs a parse tree by shifting input symbols onto a stack and applying reductions based on a

sequence of grammar productions, guided by a pre-constructed parsing table.

Thus, to implement an LR parser, it is essential to understand the elements that work together during
parsing:
e Input buffer: Stores the input string to be parsed followed by an end-of-input marker ($). The
parser reads symbols from left to right using an input pointer.
e Stack: A pushdown stack that stores grammar symbols and state numbers alternately. It starts
with state O :
v Symbols: The grammar symbols (terminals and non-terminals) that appear on the stack.
v’ States: Represent sets of LR items.
e Parsing table : is formally a two-dimensional array containing ACTION and GOTO entries.
v" ACTION table: Tells the parser whether to shift, reduce, accept, or report an error based

on the current state and_input symbol (terminal).

v" GOTO table: Tells the parser which state to go to after a reduction based on the current

state and non-terminal.

These components work together to manage how the input is parsed and guide the parser through

decisions.

Sm

LR

B -— |
-1 Parsing algorithm ——* OUTPUT

Xm-1

Action Goto
So

STACK

Figure 3. Model of LR Parsing

5.1. Constructing LR Parsing Table

The construction of parsing tables for LR parsers follows a systematic procedure that builds
upon the concept of LR items and canonical collections. The complete process is as follows:
1) Augment the grammar: Add a new start production ' - , where is the original start

symbol. This ensures a unique accept state.

2) Generate LR items: For every production, create items by inserting a dot () at every possible
position in the right-hand side.

3) Build the canonical collection of item sets (states) using the CLOSURE and GOTO operations.

4) Construct the ACTION and GOTO tables: For each state and grammar symbol, determine the

correct parsing action: shift, reduce, accept, or error.

These construction steps are the same across all LR parsers; however, they differ in the type of item
sets used (LR(0) vs. LR(1)) and in the rules for filling the ACTION table, particularly how and

when reduce actions are applied.

5.2. LR Parsing Stack-based Algorithm

All LR parsing variants (LR(0), SLR, LALR(1), CLR(1)) use the identical parsing algorithm
and driver program. The variants differ only in their table construction methods, not in table usage.
The general parsing algorithm is:
1) Initialize the stack with state 0.
2) Repeat the following steps until the input is accepted or an error is detected:

e Let be the state on top of the stack and be the current input symbol.

e Consult [, 1]
» If [,]= :push then state onto the stack, and advance the input.
> If [, 1= - :pop | _|_symbols from the stack, let ' be
the state now on top, then push and the state []
> If [, 1= : parsing is successful.
> If [,]= : report a syntax error and halt.

6. LR(0) Parsing

LR(0) parsing is the simplest form of LR parsing. It introduces the essential ideas used in all LR
parsers. Although not powerful enough for practical use with real-world programming languages due
to their inability to use lookahead symbols, LR(0) form the foundation for more powerful LR parsing
methods and can handle a subset of context-free grammars without ambiguity.

In this section, we will illustrate the LR(0) parsing process through a step-by-step example. We

begin by defining the basic concepts, such as augmented grammar and LR(0) item sets, and proceed

6

to construct the canonical collection of LR(0) items using the key operations: closure and GOTO. We
then explain how to use these item sets to build a deterministic finite automaton (DFA) representing
parser states and transitions. From this DFA, we derive the parsing tables (ACTION and GOTO).
Finally, we demonstrate the complete parsing of an input string using these tables and the stack-

based LR(0) parsing algorithm.

Note : A grammar is said to be LR(0) if it can be parsed by an LR(0) parser.

6.1. Augmented grammar
An augmented grammar is a modified version of a context-free grammar where a new start
symbol is added with a corresponding production.
Given a grammar with start symbol , the augmented grammar 'adds:
e Anew start symbol: ' (not in the original set of non-terminals),

e Anew production: ' -

The aim of this new starting production is to allow the parser to recognize when the entire input has

been successfully parsed.

6.2. LR(0) Items
An LR(0) item is a production rule with a dot (¢) at some position in its right-hand side. It
indicates how much of a production’s right-hand side has been matched so far. Formally:

Example 1 : for a production S — ABC:

S — ¢ABC (nothing recognized yet)

S — AeBC (read A, yet to read BC)

S — ABeC (read B, yet to read C)

S — ABCe (read C, entire RHS matched, ready to reduce)

Note : The production - generates only one item, - *

6.3. Closure of Item Sets
The Closure operation expands a set of LR(0) items by adding all items that can be derived from

non-terminals immediately following a dot (¢). This ensures that all possible parsing paths are

considered.
Let be aset of items for a grammar . () is computed as follows:
1) Start with all items in (initial set).
2) Repeat the following until no more items can be added:
e Foreachitem[- <]inthe set, where is a non-terminal immediately after the
dot :
< For each production - in the grammar :
» Addtheitem|[- <]Jtotheset if itis notalready present.

Example : Consider the augmented grammar:
S'— S

S —A

A —aA

A —b

Let’s compute the closure for{ ' - }
S' — S contains *S, and S — A is the only rule for S add [S — *A]
S — *Ahas *A, and A — aA, A — b are productions add [A — *aA], [A — D]

So we get: o = ' >5ePD={">5°, e, e e}

6.4. The GOTO Function

The GOTO function is used to define the transitions in the LR(0) automaton for a grammar. The
states of the automaton correspond to sets of items, and (,) specifies the transition from
the state for under symbol (terminal or non-terminal) in the input.
Given a set of items and a grammar symbol (,) is computed as:
1) Initialize an empty set .
2) Foreachitem|[- <]in ,add[- e Jto (i.e., move the dot over).

3) Compute the closure of : @

6.5. Building the Canonical Collection of LR(0) Item Sets
The canonical collection of LR(0) items is the complete set of all valid LR(0) item sets (i.e.,

parser states) that can be constructed from a given augmented grammar using the Closure and

GOTO operations. It forms the foundation of the LR(0) parsing automaton (DFA) and is essential
for building the ACTION and GOTO parsing tables.

The canonical collectionC ={ o, 1, 2,..., }is constructed using the following procedure:
1) Start with the closure of the augmented start production:

e Begin from the item ' - e and compute its closure.

e This becomes the initial item set .
2) For each item set and each grammar symbol , compute:

° (',):advance the dot over symbol and compute the closure.

e If this results in a new set of items, add it to the collection as a new state.

3) Repeat until no new item sets can be generated.

Example : Consider the previous grammar :
S'— S

S — AA

A —aA

A —b

The initial state g is obtained using the closure function.

0— ({I_’.}):{I_’.l_’. o - ® l_’.}

The remaining elements in set are obtained by the GOTO function. We compute (,) for

every symbol (terminal or non-terminal) that appears immediately after the dot in some item of the

set .

1= (oo)={"~ <}

2= (o)={ - =} { - . —e}={ - - -}
2= (0)={ =} { -+ ~e}={ -, - -}
4= (0o)={ - <}

1 and 4 have only one final item, there is no need to apply the GOTO function.

Consider » :

5= (2)={ - °}

(2)={ -~ =} { =+, ~=}={ - =, - , ~e}=,
(20)={ - <}=4

Consider 3:

6 — (3)={ - °}

(31):{_'.}{_’.1 i) _’.}:{_’.1 - °) _’.}:3
(3)={ - <}=4

Therefore the canonical collection of LR(0) items for our grammarisC ={ g, 1, 2, 3, 4 5 &}

The following table summarizes the aforementioned results :

States Transitions
States Items S A a b
0 e e e | 1 2 3 4
1 { "= <}
) { - o, 5 | L e} 5 3 4
3 { - o, 5 , L e} 6 3 4
4 { - <}
5 { - °}
6 { - <

6.6. Constructing the LR(0) DFA Using Item Sets

Once the canonical collection of LR(0) items is constructed using the Closure and GOTO

operations, we can organize these sets of items into a deterministic finite automaton (DFA) that

models the behavior of the parser. This DFA guides the parser through valid parsing decisions based

on the input symbols and grammar structure.

In this DFA:

States correspond to sets of LR(0) items (also called configurations).

Transitions between states are labeled by grammar symbols (terminals and non-terminals).

The initial state is the closure of the item containing the augmented start production with the
dot at the beginning ([* - <]).

For each state (set of items), and each grammar symbol that appears immediately after a dot in
one or more items of that state, we compute a transition using the GOTO function. (.,)

defines the next state by advancing the dot over and applying closure to the result.

The resulting DFA represents all valid configurations of the parser as it processes an input

10

string. Each path through the DFA corresponds to a possible derivation of a string in the language.
This DFA serves as the foundation for constructing the ACTION and GOTO parsing tables used by
the LR(0) parser.

Example : The DFA of the previous grammar is illustrated in Figure 4.

Figure 4. DFA for the grammar in Example.

6.7. Constructing Parsing Tables

Once the canonical collection of LR(0) items (or equivalently, the DFA of LR(0) item sets) is
constructed, the next step is to build the parsing tables used by the LR(0) parser: the ACTION table
and the GOTO table.
The ACTION table has dimensions of x , including end-marker §. Each entry
contains one of four possible actions: shift, reduce, accept, and empty cells represent syntax errors.
The GOTO table has dimensions of X - . Each entry either contains a
state number indicating the next state to transition to after reducing to that non-terminal, or remains

empty to indicate no valid transition exists.

s ACTION table construction rules

For each state in the canonical collection of LR(0) item sets :

» Shift entries : If - is in where is a terminal, and (,)=, then

This means: on seeing terminal , the parser shifts and push state .

> Reduce entries : If - eisin , and # ', then [,]1=" " for

11

every terminals

numbered grammar.

» Acceptentry: If '

(including §), where

- e®isin

conflicts in ambiguous grammars.

s GOTO table construction rule

For each non-terminal

(If (,

, then

):

is the number of the production

[.$] ="

Note: Since LR(0) has no lookahead, reductions are applied on all terminals, which can lead to

, then:

[, 1=

(go to state)

This tells the parser to transition to state after reducing to non-terminal A.

Example : Given the previous grammar numbered :

(1)S — AA
(2) A — aA

(3)A — b

The following combined table represent its ACTION and GOTO tables.

The codes for the actions are :

L 2

means shift and stack state

means reduce by the production numbered

means accept

Blank means error

ACTION GOTO
States a b $ S A
0 S3 S4 1 2
1 acc
2 S3 S4 5
3 S3 S4 6
4 R3 R3 R3
5 R1 Rl RI1
6 R2 R2 R2

—

in the

Using the LR parsing stack-based algorithm presented in section 5.2, Let’s parse the input string

“aabb” :

Stack

Input

Action

$

aabb$

Push state 0

12

$0 aabb$ = Si: shift ‘a’ then state 3 and increment

$0a3 abb$ = Ss: shift ‘a’ then state 3 and increment

$0a3a3 bb$ S4: shift ‘b’ then state 4 and increment

$0a3a3b4 b$ Ras: reduce by A — b : pop 2 symbols, replace by A, push GOTO[3, A]=6
$0a3a3A6 b$ Ra: reduce by A — aA : pop 4 symbols, replace by A, push GOTO[3, A]=6
$0a3A6 b$ Ra: reduce by A — aA : pop 4 symbols, replace by A, push GOTO[0, A]=2
$0A2 b$ S4: shift ‘b’ then state 4 and increment

$0A2b4 $ Rs:reduce by A — b : pop 2 symbols, replace by A, push GOTO[2, A]=5
$0A2AS5 $ Ry reduce by S — AA : pop 4 symbols, replace by S, push GOTO[0, S]=1
$0S1 $ Accept

Note : ACTION and GOTO tables can be extracted directly from the DFA of LR(0) items by

following this procedure :

From each DFA state

» For each transition (,)=
e If isaterminal, set [, 1=" "
e If isanon-terminal, set [, 1=

» If contains - <e(dotatendand #):

e For all terminals , set [,]1=" - " (or , where s

the number of production -~ in the numbered grammar)

» If contains “ - e, set [.$] =" "

7. SLR(1) Parsing

SLR(1) (Simple LR with 1-token lookahead) parsing is an enhancement of LR(0) parsing. It
uses the same set of LR(0) items to construct an automaton of LR(0) items but improves decision-

making during reductions by using FOLLOW sets of non-terminals to restrict reduce actions,

which avoids incorrect reductions and helps resolve some shift/reduce and reduce/reduce parsing
conflicts that LR(0) cannot handle.

Note : A grammar is said to be SLR(1) if it can be parsed by an SLR(1) parser.

7.1. SLR(1) Table Construction Rules

SLR(1) follows the same parser construction procedure as LR(0), but differs by considering

13

FOLLOW sets to restrict reduce entries in the ACTION table to specific terminals.

1) Foreach state in the canonical collection of LR(0) item sets :

» Shift entries : If - is in where is a terminal, and (,)=, then
[l] - n ||.
> Reduceentries:If - eisin , and # ', then:
For each terminal ():
[,]1=" ", where is the number of the

production - in the numbered grammar.
> Acceptentry:If ' - eisin ,then [,$] =" "

2) For each non-terminal : If (,)=, then: [. 1= (gotostate)

Example 1: Let’s construct LR(0) and SLR(1) parsing tables for the augmented grammar :

E' - E

E-E+T|T

T-T*F|F

F- (E)|id

0= (O)

O:{'_’.a_’.+1_‘.1_’. 1_’.1_‘.()1_'.}

Below is the canonical collection of LR(0) item sets :

6= (1 +)={
1= (o)=t 2= (o)=t u= (o0={ .77
oo - . o () .
T o L O
S
_ _ . 7= (20)={
3= (Oa):{ 5: . (Ol)_{ :.() N -
5 e _,o()
\ } } .
}
8:() (a)= A(E45()—{) 54,) = ()=t
N ® | 5 e 4 N ° }__) *
} - =2 -0

-+ - (a4)=¢
L e _,o() L, e
} - 1= 3
1= 4
(e 0= (7.0 =
(e)=t "o () - (=)
L e Le + Le +
= 3 - ® 0= (7)=t -
(61):{ - ° } - ¢
- -<() - ()
1= s - - e
1= 4 1= 4
(81+):{
- +e (91):{
(7)=¢ 1= (8)) = - - .
- - () - - ()
1= s } () -
- 1= 7
1= 6

E

accept

Iz
T B —T- *

Figure 5. DFA

Now, we construct both the LR(0) and SLR(1) parsing tables for the expression grammar. Let us

begin by numbering the productions.
(DE-E+T

15

() E - T

B3)T-T*F

4T-F

F-(E)

(6)F - id

Table : LR(0) Parsing Table for Grammar Example
ACTION GOTO

States id @+ * () $ E T F
0 S5 S4 1 2 3
1 S6 acc
2 R2 R2 |R2/S7|R2 R2 R2
3 R4 R4 | R4 R4 R4 R4
4 S5 S4 8 2 3
5 R6 R6 | R6 R6 R6 RO
6 S5 S4 9 3
7 S5 S4 10
8 S6 S11
9 R1 R1 |RI/S7|R1 R1 RI1
10 R3 R3 |R3 R3 R3 RS3
11 R5 R5 | RS R5 R5 RS

In the LR(0) parsing table, we observe a shift/reduce conflict in states 2 and 9 when the lookahead
symbol is *. This conflict arises because LR(0) does not consider any lookahead information when
making reduction decisions.
In contrast, the SLR(1) parser resolves this conflict by allowing reductions only when the current
input symbol belongs to the FOLLOW set of the non-terminal being reduced.
Based on FOLLOW sets, we construct the SLR(1) parsing table, which is illustrated below.
We observe that the table contains no conflicts, confirming that the grammar is SLR(1)-compatible.
Follow (E*) = {$}
Follow (E) = {+,), $}
Follow (T) = {+, *,), $}
Follow (F) = {+, *,), $}

Table : SLR(1) Parsing Table for Grammar Example

ACTION GOTO
States id @+ * () $ E T F
0 S5 S4 1 2 3
1 S6 acc
2 R2 | S7 R2 R2

16

3 R4 | R4 R4 R4

4 S5 S4 8 2 3
5 R6 | R6 R6 R6

6 S5 S4 9 3
7 S5 S4 10
8 S6 S11

9 R1 | S7 R1 Rl

10 R3 | R3 R3 R3

11 R5 | RS R5 RS

Using the LR parsing stack-based algorithm presented in section 5.2, Let’s parse the input string

“id*1d+id” :

Stack Input Action

$ id*id+id$ = Push state 0

$0 id*id+id$ | Ss: shift ‘id’ then state 5 and increment

$0id5 *id+id$ | Re: reduce by F - id: pop 2 symbols, replace by F, push GOTO[0, F]=3
$OF3 *id+id$ R4 reduce by T - F : pop 2 symbols, replace by T, push GOTO[0, T]=2
$0T2 *id+id$ | S7: shift “*’ then state 7 and increment

$0T2*7 id+id$ | Ss: shift ‘id’ then state 5 and increment

$0T2*7id5 +id$ Re: reduce by F - id : pop 2 symbols, replace by F, push GOTO[7, F]=10
$0T2*7F10 +id$ Rs:reduce by T - T * F: pop 6 symbols, replace by T, push GOTO[0, T]=2
$0T2 +id$ Rz: reduce by E — T : pop 2 symbols, replace by E, push GOTOJ0, E]=1
$O0E1 +id$ = Se: shift ‘+’ then state 6 and increment

$OE1+6 id$ = Ss: shift ‘id’ then state 5 and increment

$0E1+61d5 $ Re: reduce by F - id : pop 2 symbols, replace by F, push GOTO[6, F]=3
SOE1+6F3 $ R4:reduce by T - F : pop 2 symbols, replace by T, push GOTO[6, T]=9
$OE1+6T9 $ Ri:reduce by E — E+T : pop 6 symbols, replace by E, push GOTOJ0, E]=1
$OE1 $ Accept

8. CLR(1)/ LR(1) Parsing

CLR(1) parsing is a sophisticated bottom-up parsing technique that extends LR(0) by
incorporating precise lookahead information directly into the parser states. CLR stands for
"Canonical LR" and represents the full, canonical implementation of LR(1) parsing.
CLR(1) parsing follows the same general procedure as LR(0) and SLR(1) for constructing the
parsing table; however, it uses LR(1) items instead of LR(0) items, which leads to modifications in

the Closure and GOTO operations, and consequently results in a more precise parsing table.

Note : A grammar is LR(1) (or Canonical LR(1)) if it can be parsed by a canonical LR parser.

17

8.1. LR(1) Items

An LR(1) item is a production of the grammar augmented with:

v" A dot (*) indicating how much of the production has been recognized

v" A lookahead symbol, which is a terminal that can legally follow the non-terminal being
reduced.

Each item has the form: [- e ,]. It means: parsed , expecting next in the input, and

reducingby - only if the next input symbol is

Example: Consider the first production in any augmented grammar : S' — S
An LR(1) item could be: [S' — *S, $]. This means we’re just starting to parse S, and we expect the

end of input ($) after S.

8.2. Closure of LR(1) Items
Given a set of LR(1) items , the () is constructed by:
1) Initially placing all items in into the closure set.
2) Foreachitem[- < ,]in the set:
e For each production - inthe grammar
¢ Foreach terminal in ()

» Add[- =,]tothesetifit’s not already included.

Note: () means we compute of the string followed by .If is not nullable:

()= ().If isnullable: ()= () ()

Example: Consider the augmented grammar :
S'—S

S—CC

C—cC

C—d

Let’s compute {L"'-- %1}
Since the dot is before S, and S — CC, we add: [S — *CC, §]
Now dot is before C, and C — ¢C | d. So we need to add :

[C — « ¢C, FIRST(CS$)]; FIRST(CS) = FIRST(C)={c, d}

18

[C — « d, FIRST(C$)]; FIRST(CS) = FIRST(C)={c, d}

Thus:
[~ 8]
:{[l_’.a$]1[- ¢ 1$]1[- ¢ 1]1[- ® |]1[- ¢ 1]1[- *]}

8.3. The GOTO Function for LR(1) Items
While the structure of the GOTO function is similar to that in LR(0), the presence of lookahead

symbols in LR(1) requires careful handling during the closure step, where lookaheads can propagate
and vary.

Given a set of LR(1) items and a grammar symbol (,) constructs the next item set
reachable by reading . Formally:

If contains items of the form[- e« ,], then (,)= dr - -<.1»

The process involves two main steps:
e Transition: Move the dot over in all applicable items. The lookahead symbol remains
unchanged.

e Closure: Compute the closure of the resulting items. Here, new items may have different

lookaheads, based on ().

8.4. Canonical Collection of LR(1) Item Sets (C)

The procedure for constructing the canonical collection of LR(1) items closely mirrors that of
LR(0). It follows the same overall steps: begin with the closure of the initial item set, then apply the
GOTO function repeatedly to discover all reachable sets of items. The key difference lies in the
nature of the items themselves — LR(1) items carry lookahead symbols, which are taken into

account when applying the Closure and GOTO operations.

Example: Consider the augmented grammar :
S'—S

S—CC

C—cC

C—d

19

The initial state g is obtained using the closure function.
0= (IR)
:{[l_’ .1$]’[- ® 1$]1[- *]1[- *]1[- *]1[- *]}

The remaining elements in set are obtained by the GOTO function.

1= (o)={["- <%}
2 = (oo)={[- =8 {[-- 8]1.[- - 81}
={L - <. 8[-= 81.[-« 8]}
3= (o)={[- = 10 - B - .711-°.71
={{ - 1[0 - . 10-° 10-<,1[-<.1
4= (oo)={[- =« 1[- =« I}
Consider :
5= (20)={[- =3I}
6= (2)={[- .8} {[-~ 8]1.[- = 81}
={L - < .8I[-+« 8]1.[-« 81}
7= (20)={ - =<SI
Consider 3 :
8 = (3)={[- «1[- <« 1}
(z)={ - .10 - 10 - . 10-= 10-<,1[-<.1
- 3

(&)= - «1[- =« 1}=4

Consider g :

9= (6)={[- =3I}
(6)={[- < .8I[- 81.[- < 8I}=5
(6)={[- <SI}= <

The DFA of LR(1) item sets is shown in Figure 6.

20

I . S I
5 4.58 5535.8%
S5—-CC. %
O <Cield & %
: roi S-»C-C,8 S—»CC-,$
L——-C—»-::C’,S
C—-d§ T C__—_—Ig
—~ > C—¢c-C,$: C—cC-,$
C—-cC,$
C—d,$ D
14
d Iz
C—d,$
\ C I3 C___ IB
C—c-C,e/d = C—cC-,c/d
G—%CC,CJ/L{ :)
C—.d,c/d
rd
d 14
C—d-,c/d

Figure 6. DFA

8.5. CLR(1) Table Construction Rules

1) Foreach state in the canonical collection of LR(1) item sets :

> Shift entries : If[- <« |,]isin where is a terminal, and (,)=, then
[1="
> Reduce entries : If[- e J]isin , and # ', then: [,]1=" "

where is the number of the production - in the numbered grammar.
> Acceptentry:If[' - < $]isin ,then [,$] =" "

2) For each non-terminal : If (,)=, then: [, 1=

Example : Let’s construct LR(1) parsing table for the grammar :

()S —-CC
2)C —>cC
3)C —d
Table : CLR(1) Parsing Table for Example
ACTION GOTO
States ¢ d § S C
0 S3 S4 1 2
1 acc
2 S6 S7 5
3 S3 S4 8

21

4 R3 R3

5 R1

6 S6 S7 9
7 R3

8 R2 R2

9 R2

9. LALR Parsing

LALR(1) stands for Look-Ahead LR(1). It is a type of LR parser that combines the power of
CLR(1) with the table size efficiency of SLR(1). The key idea is to merge LR(1) item sets that have
the same LR(0) core, thereby reducing the number of parser states and producing a smaller parsing
table.

It is widely used in practice due to this balance between precision and efficiency. Tools like Yacc,

Bison, and many compiler generators produce LALR(1) parsers.

Notes :
e A grammar is LALR(1) if it can be parsed by an LALR(1) parser.
e LR(0) C SLR(1) C LALR(1) C LR(1)/CLR(1).

Example : consider the canonical collection of LR(1) item sets of the previous grammar. Three pairs
of item sets can be merged zand 4, 4and 7, gand o
s={[- <. 3 - <. [-+ 1~ . 10-+.00--.,01
e={ - « .81[- $1.[-+ .81
- = - = 18 -- . 1I$1.[- -. 118}
4=l - =1 - =D
7={[- <%}

- ={ - - | I8}

8:{[- *]l[- *]}
o =A{[- 31}

l

- ={ - -« | I8}

After merging item sets with the same LR(0) core, the ACTION table may include additional reduce

22

actions (one for each lookahead symbol now present), and the GOTO table reflects transitions from
the merged state for each possible symbol after the dot, preserving the correct shift or goto

destinations as in the original unmerged sets.

The LALR parsing table for the above grammar is shown in Table X.
Table : LALR(1) Parsing Table for Example

ACTION GOTO
States ¢ d $ S C
0 S36 S47 1 2
1 acc
2 S36 S47 5
36 S36 S47 89
47 R3 R3 R3
5 R1
89 R2 R2 R2

23

