Real functions of one variable

1 The sets of real numbers

1.1 Common sets of numbers

We recall the following notations for subsets of \mathbb{R} .

- $\mathbb{N} = \{0, 2, 3 \dots\}$ is the set of natural numbers.
- $\mathbb{Z} = \{\cdots, -3, 2, -1, 0, 2, 3\cdots\}$ is the set of integers numbers.
- $\mathbb{D} = \left\{ \frac{a}{10^n}; \ a \in \mathbb{Z}, \ n \in \mathbb{N} \right\}$ is the set of decimal numbers.
- $\mathbb{Q} = \left\{ \frac{p}{q}; \ p \in \mathbb{Z}, \ q \in \mathbb{Z}^* \right\}$ is the set of rational numbers.
- \bullet R represents the set of real numbers and we have the following inclusions:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$$
.

• For each of theses sets, the addition of the sign * means that we exclude 0 from the sets: \mathbb{N}^* , \mathbb{Z}^* , \mathbb{R}^* , \cdots

Example 1

- 1. Is it $\sqrt{10} \in \mathbb{Q}$?. No
- 2. The set of natural numbers \mathbb{N} is
 - Infinite set.
 - Countable set.
 - Finite and uncountable set.
 - infinite and countable set. \checkmark

1.2 Intervals of \mathbb{R}

Definition 1 An interval can be defined as a set of real numbers that contains all real numbers lying within any two specific numbers of the set \mathbb{R} .

We can write the intervals as subsets of a set of real numbers and these intervals can be written as open and closed intervals.

Suppose that a and b are two real numbers $(a, b \in \mathbb{R})$, such that a < b. Then,

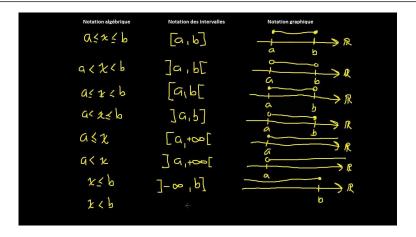


Figure 1: The intervals of the real line.

Notations:

- $\mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[.$
- $\mathbb{R}_+ = \{x \in \mathbb{R} / x \ge 0\} =]0, +\infty[.$
- $\mathbb{R}_{-} = \{x \in \mathbb{R} / x \le 0\} =]-\infty, 0[.$
- $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty].$

1.3 Real functions of one variable

Definition 2 A function f of a real variable is a rule which assings to each $x \in D \subset \mathbb{R}$ exactly one $y \in \mathbb{R}$. We have:

$$\forall x \in D, \exists ! y \in \mathbb{R} : y = f(x).$$

- The variable x is called independent variable and y is called dependent.
- The set D is called the domain of the function f and denoted D(f) or D_f defined by:

$$D(f) = D_f = D = \{ y = f(x) / x \in D(f) \}.$$

We write:

$$f: D \to f(D)$$

$$x \longmapsto y = f(x),$$

where f(D) is called the image of D by the function f.

Example 2 Determine the set D for each function f:

1.
$$f(x) = \frac{1}{x}$$
 $D = \mathbb{R}^*$.

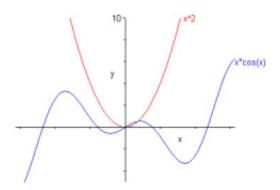
2.
$$f(x) = \frac{1}{\sqrt{x}}$$
 $D = \mathbb{R}_+^*$.

3.
$$f(x) = \sqrt{x^2 + 1}$$
. $D = \mathbb{R}$.

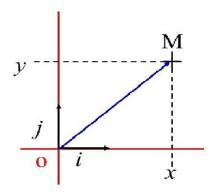
1.4 Graph (Curve) of a function

Definition 3 The graph of a function f is the set of all points in the plane of the form (x, f(x)). We could also define the graph of f to be the graph of the equation y = f(x). Given a function $f: D \to f(D)$. The graph of the function f is the set:

$$G(f) = \{(x, f(x)) : x \in D\}.$$

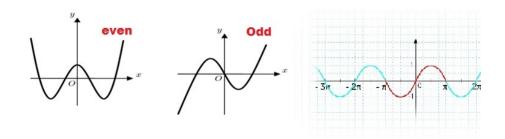


Definition 4 The graph of f (or representation curve) is the set of points (x, y). On a cartesian plane $(O, \overrightarrow{i}, \overrightarrow{i})$, each couple of points is associated with a unique point M of (x, y), such that: $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j}$.



Proposition 1 Let $f: D \to \mathbb{R}$ be a function and we assume that for all $x \in D$, $-x \in D$. We say that,

- f is even on D if $\forall x \in D$, $-x \in D$: f(-x) = f(x). In this case the curve of f is symmetric with respect to OY.
- f is odd on D if $\forall x \in D$, $-x \in D$: f(-x) = -f(x). In this case the curve of f is symmetric with respect to the origine O(0,0).
- f is periodic on D with a period T if T is the smallest positive real number, such that $\forall x \in D, f(x+T) = f(x).$



Definition 5 (Monotonic functions) Let $f: D \to \mathbb{R}$ be a function. We say that

• f is increasing (resp. strictly increasing) if

$$\forall x_1, x_2 \in D : x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2) \qquad (resp. x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)).$$

• f is decreasing (resp. strictly decreasing) if

$$\forall x_1, x_2 \in D : x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$$
 (resp. $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$).

• f is monotonic on D if it is increasing or decreasing on D.

1.5 Composition functions

Definition 6 Let $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ and $g: D_g \subseteq \mathbb{R} \to \mathbb{R}$, such that $\forall x \in D_f: f(x) \in D_g$ ($f(D_f) \subseteq D_g$). Then, $g \circ f$ is a function defined on D_f by:

$$(g \circ f)(x) := g(f(x)), \quad \forall x \in D_f.$$

Noting:

$$x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) = (g \circ f)(x).$$

Remark 1 If the function $g \circ f$ exists, then the composition function $f \circ g$ dosen't always exists, and when $f \circ g$ exists then, in general: $g \circ f \neq f \circ g$.

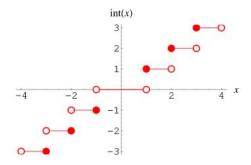
Example 3 Let $f(x) = \sqrt{x}$, where $D_f = \mathbb{R}_+$ and $g(x) = \frac{1+x}{1-x}$, where $D_g = \mathbb{R} - \{1\}$. Then, we have

$$(g \circ f)(x) = \frac{1+\sqrt{x}}{1+\sqrt{x}}$$
 and $(f \circ g)(x) = \sqrt{\frac{1+x}{1-x}}$.

1.6 Integer part of a real number

Definition 7 The integer part of a real number x is the greatest integer less than or equal to x. To be more precise, for $x \in \mathbb{R}$, there exists a unique integer $p \in \mathbb{Z}$, such that $p \le x . The integer <math>p$ is called the integer part of x and we write E(x) or [x]. The function E(x) is defined by:

$$E: \mathbb{R} \to \mathbb{Z}$$
$$x \mapsto E(x).$$



Example 4 $E(\pi) = 3$, $E(-\frac{3}{2}) = -2$, $E(\sqrt{2}) = 1$.

Proposition 2

- 1. $\forall x \in \mathbb{Z} \iff E(x) = x$.
- 2. $\forall x \in \mathbb{R}, \ E(x) \le x < E(x) + 1.$
- 3. $\forall x \in \mathbb{R}, \ E(x+n) = E(x) + n, \ for \ n \in \mathbb{N}.$
- 4. $\forall x, y \in \mathbb{R}, \ E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1.$
- 5. The function E(x) is increasing over \mathbb{R} , i.e,

$$\forall x_1, x_2 \in \mathbb{R}, \ x_1 \le x_2 \Longrightarrow E(x_1) \le E(x_2).$$

Exercise 1 Demonstrate the following properties:

(a) For all $x \in \mathbb{R}$, $n \in \mathbb{N}$, E(x+n) = E(x) + n. Indeed, we have

$$E(x) \le x < E(x) + 1 \Longleftrightarrow E(x) + n \le x + n < E(x) + n + 1.$$

Then, E(x+n) = E(x) + n.

(b) For all $x \in \mathbb{R}$, $x - 1 < E(x) \le E(x) + 1$. Indeed, We have $E(x) \le x < E(x) + 1$. Then,

$$E(x) \leq x \qquad and \qquad x < E(x) + 1 \Longrightarrow x - 1 < E(x).$$

Therefore, $x - 1 < E(x) \le E(x) + 1$.

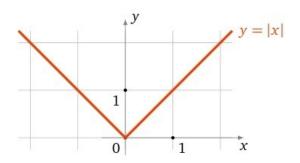
1.7 Absolute value function

Definition 8 Let $x \in \mathbb{R}$, we denote by |x| the absolute value of x defined by

$$|.|: \mathbb{R} \to \mathbb{R}_+$$

$$x \mapsto |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0. \end{cases}$$

It is also defined by: $|x| = \max(-x, x)$.



Proposition 3 Let $x, y \in \mathbb{R}$. We have

1.
$$|x| \ge 0$$
.

2.
$$|x| = 0 \iff x = 0$$
.

3.
$$|x| = |-x|$$
.

4.
$$x \le |x| \text{ and } -x \le |x|$$
.

5.
$$\forall \alpha \in \mathbb{R}_+ : |x| \le \alpha \Longleftrightarrow -\alpha \le x \le \alpha$$
.

6.
$$\forall \alpha \in \mathbb{R}_+: |x| \ge \alpha \Longleftrightarrow \alpha \le x \quad or \quad \alpha \ge x.$$

7.
$$\left|\frac{x}{y}\right| \le \frac{|x|}{|y|}$$
, if $y \ne 0$.

8.
$$|xy| = |x||y|$$
.

9. Traingle inequality:
$$\forall x \in \mathbb{R}, |x+y| \leq |x| + |y|$$
. Indeed, We have

$$|x + y|^2 = (x + y)^2$$

= $x^2 + 2xy + y^2$
= $|x|^2 + 2xy + |y|^2$.

Since that: $2xy \le 2|xy| = 2|x||y|$, then

$$|x+y|^2 \le |x|^2 + 2|x||y| + |y|^2,$$

= $(|x|+|y|)^2.$

Therefore, $|x + y| \le |x| + |y|$.

10.
$$||x| - |y|| \le |x + y| \le |x| + |y| \le |x + y| + |x - y|$$
.

1.8 Limits at a point

Definition 9 For a function $f: D \to \mathbb{R}$, a real number L is said to be a limit of f at x_0 if

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in D, \ 0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

If L is a limit of f at x_0 , then we also say that f converges to L at x_0 (or f(x) approaches L as x approaches x_0). We often write

$$L = \lim_{x \to x_0} f$$
 or $L = \lim_{x \to x_0} f(x)$.

Proposition 4 If the function f has a limit L at a point x_0 , then this limit is unique.

1.8.1 Right-hand limit and left-hand limit

Definition 10 Let $f: D \to \mathbb{R}$ and $x_0 \in \mathbb{R}$. We say that

(i) f has a right-hand limit at x_0 if

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0} f(x) = L \iff \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in D, \ x_0 < x < \delta + x_0 \Rightarrow |f(x) - L| < \varepsilon.$$

(ii) f has a left-hand limit at x_0 if

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0} f(x) = L \iff \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in D, \ x_0 - \delta < x < x_0 \Rightarrow |f(x) - L| < \varepsilon.$$

Definition 11 Let $f: D \to \mathbb{R}$ and $x_0 \in \mathbb{R}$. We have

*
$$\lim_{x \to x_0} f(x) = +\infty \iff \forall M > 0, \ \exists \delta > 0 : \ 0 < |x - x_0| < \delta \implies f(x) > M.$$

*
$$\lim_{x \to x_0} f(x) = -\infty \iff \forall M > 0, \ \exists \delta > 0 : \ 0 < |x - x_0| < \delta \implies f(x) < -M.$$

*
$$\lim_{x \to +\infty} f(x) = +\infty \iff \forall M > 0, \ \exists K > 0: \ x > K \Longrightarrow f(x) > M.$$

*
$$\lim_{x \to -\infty} f(x) = +\infty \iff \forall M > 0, \ \exists K > 0: \ x < -K \implies f(x) > M.$$

*
$$\lim_{x \to +\infty} f(x) = -\infty \iff \forall M > 0, \ \exists K > 0: \ x > K \implies f(x) < -M.$$

$$* \lim_{x \to -\infty} f(x) = -\infty \iff \forall M > 0, \ \exists K > 0: \ x < -K \Longrightarrow f(x) < -M.$$

1.8.2 Operations on limits

Proposition 5 Let $f, g: D \subseteq \mathbb{R} \to \mathbb{R}$ be two functions and $x_0 \in \mathbb{R}$, such that

$$\lim_{x \to x_0} f(x) = L \qquad and \qquad \lim_{x \to x_0} g(x) = L'.$$

Thus,

- 1. $\lim_{x \to x_0} (f+g)(x) = L + L'$.
- 2. $\lim_{x \to x_0} (f \times g)(x) = L \times L'.$
- 3. $\lim_{x \to x_0} \left(\frac{f}{g} \right)(x) = \frac{L}{L'}, \ L' \neq 0.$
- 4. $\lim_{x \to x_0} \alpha f(x) = \alpha L, \quad \alpha \in \mathbb{R}.$
- 5. $f(x) \leq g(x) \Longrightarrow L \leq L'$.

Remark 2 The indeterminate forms of limits are:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, 0 , $-\infty + \infty$, 1^{∞} , 0^{0} , 0^{∞} , ∞^{∞} .

2 Continuous functions

Definition 12 The function f is continuous at some point $x_0 \in D_f$ if the limit of f(x), as x approach x_0 through the domain of f, exists and is equal to $f(x_0)$. In mathematical notation:

$$\forall x \in D_f: \qquad \lim_{x \to x_0} f(x) = f(x_0).$$

Example 5 The function $f(x) = \frac{1}{x-1}$ is not continuous on \mathbb{R} , but it is continuous on $]1, +\infty[$ or $]-\infty, 1[$.

Proposition 6 The function f is continuous at $x_0 \in D_f \iff \lim_{x \stackrel{>}{\to} x_0} f(x) = f(x_0) = \lim_{x \stackrel{>}{\to} x_0} f(x)$.

Definition 13 A function f is continuous on D_f if it is continuous at every point $x_0 \in D_f$, i.e. $\lim_{x \leq x_0} f(x) = \lim_{x \geq x_0} f(x) = f(x_0)$.

Proposition 7 Let $I \subset \mathbb{R}$ and $f, g : I \to \mathbb{R}$ are continuous functions at $x_0 \in I$, then the functions λf $(\lambda \in \mathbb{R})$, f + g, fg, $\frac{f}{g}$ $(g \neq 0)$ and |f| are continuous at x_0 .

3 Derivable functions

Definition 14 Let $x_0 \in D$, assume that there exists r > 0, such that $]x_0 - r$, $x_0 + r[\subset D]$. We say that $f: D \to \mathbb{R}$ is derivable at x_0 if the limit $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists and finite and we have:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Example 6 Prove that the function $f(x) = \sqrt{x}$ is derivable at every point $x_0 > 0$ and $f'(x_0) = \frac{1}{2\sqrt{x_0}}$. We have,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{x - x_0}{(x - x_0)(\sqrt{x} + \sqrt{x_0})}$$

$$= \frac{1}{2\sqrt{x_0}}.$$

Then, the limit exists and it is unique, thus f is differentiable at $x_0 > 0$ and we have $f'(x_0) = \frac{1}{2\sqrt{x_0}}$.

Proposition 8 Let $f: I \to \mathbb{R}$ be a function, such that I is an open interval of \mathbb{R} and $x_0 \in I$.

• If f is derivable at x_0 (or on I), then f is continuous at x_0 (or on I). The receprocal is false.

Example 7 We know that the function f(x) = |x| is continuous at $x_0 = 0$ $(\lim_{x\to 0} f(x) = 0) = f(0)$.

On the other hand,

$$\lim_{x \to x_0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to x_0} \frac{|x|}{x} = \begin{cases} 1, & x \le 0 \\ -1, & x < 0. \end{cases}$$

Then,

$$\lim_{x \le x_0} \frac{f(x) - f(0)}{x} \ne \lim_{x \ge x_0} \frac{f(x) - f(0)}{x}.$$

Therefore, f is not derivable at x_0 .

• We say that f is right-derivable (resp. left-derivable) at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ (resp. $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$) exists and finite.

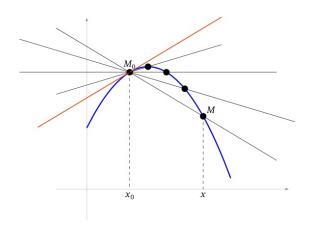
• f is derivable at x_0 if and only if $\lim_{x\to h} \frac{f(x+h)-f(x_0)}{h}$ exists and finite.

Definition 15 We say that f is derivable on D if f is derivable at every point $x \in D$. The derivative function of f is denoted by: f' or $\frac{df}{dx}$.

3.1 Tangent to a curve

The line passing through the distinct points $(x_0, f(x_0))$ and (x, f(x)) has the slope $\frac{f(x) - f(x_0)}{x - x_0}$. Passing to the limits, we find that the slope is $f'(x_0)$. The tangent equation at a point $(x_0, f(x_0))$ is given by:

$$y = (x - x_0)f'(x_0) + f(x_0).$$



Definition 16 A tangent is a line that touches a curve at a single point and does not cross through it. The point where the curve and the tangent meet is called the point of tangency. We know that for a line y = ax + b its slope is a.

Method: To trace the tangent, we need to determine two points of the tangent line using its equation and plot the line passing through those points.

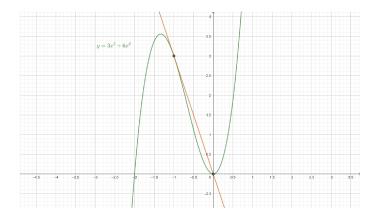
Example 8 Let $f(x) = 3x^3 + 6x^2$, we will prove how to trace the tangent of this function at x = -1.

To determine the point where the curve and the tangent touch, we can read that f(-1) = 3. Then, the curve and the tangent touch at the point (-1,3).

Now, we must determine the equation of the tangent. For that, we must determine the derivative function of f. We have: $f'(x) = 9x^2 + 12x$. Also, we determine the equation of the tangent as follows:

$$y = f'(-1)(x - x_0) + f(-1) = -3(x + 1) + 3 = -3x.$$

We can then determine another tangent point. When x = 0 and y = 0, so we can use the two points to draw the tangent line.



3.2 Derivative calculation

Proposition 9 Let $f, g: I \subset \mathbb{R} \to \mathbb{R}$ be two derivative functions on I. Then,, for all $x \in I$, we have:

- (f+g)'(x) = f'(x) + g'(x).
- $(\lambda f)'(x) = \lambda f'(x)$, where λ is a fixed real number.
- $\bullet \ (f \times g)'(x) = f'(x)g(x) + f(x)g'(x).$
- $\bullet \left(\frac{1}{f}\right)'(x) = -\left(\frac{f'(x)}{f^2(x)}\right), \qquad (f(x) \neq 0).$
- $\bullet \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}, \qquad (g(x) \neq 0).$

Remark 3 If you have to derivate a function with an exponent dependent on x, it is absolutely necessary to convert it back to the exponential form. For example: if $f(x) = 2^x$, then firstable we write $f(x) = e^{x \ln 2}$, after that we calculate the derivative $f'(x) = \ln 2e^{x \ln 2} = 2^x \ln 2$.

3.3 Derivative of elementary functions

The first table as a summary of the main formulas to know, where x is a variable. In the second table, u represent a function $x \mapsto u(x)$.

Function	Derivative
x^n	$nx^{n-1} \ (n \in \mathbb{Z})$
$\frac{1}{x}$	$-\frac{1}{x^2} (x \neq 0)$
\sqrt{x}	$\frac{1}{2\sqrt{x}},(x>0)$
x^{α}	$\alpha x^{\alpha-1} \ (\alpha < 1 \text{ et } x \neq 0) \lor (\alpha \ge 1)$
e^x	e^x
$\ln x$	$\frac{1}{x} (x \neq 0)$
$\cos x$	$-\sin x$
$\sin x$	$\cos x$
$\tan x$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

Function	Derivative
u^n	$nu'u^{n-1} \ (n \in \mathbb{Z})$
$\frac{1}{u}$	$\frac{-u'}{u^2}, (u \neq 0)$
\sqrt{u}	$\frac{u'}{2\sqrt{u}} \ (u \neq 0)$
u^{α}	$\alpha u' u^{\alpha-1}, (\alpha < 1 \text{ et } u \neq 0) \lor (\alpha \ge 1)$
e^u	$u'e^u$
$\ln u$	$\frac{u'}{u}$
$\cos u$	$-u'\sin u$
$\sin u$	$u^{\prime}\cos u$
$\tan u$	$u'(1+\tan^2 u) = \frac{u'}{\cos^2 u}$

3.4 Derivative of a composite function

Theorem 1 Let f be a function defined on $I \subseteq \mathbb{R}$, g be a function defined on $J \subseteq \mathbb{R}$, with $f(I) \subseteq J$ and $x_0 \in I$. If f is derivative at x_0 and g is derivative at $f(x_0)$, then $g \circ f$ is derivative at $f(x_0)$ and we have:

$$(g \circ f)'(x_0) = g'(f(x_0)) = f'(x_0)g'(f(x_0)).$$

Example 9 Calculate the derivative of the function $H(x) = \ln(1 + x^2)$. Put: $g(x) = \ln(x)$ with $g'(x) = \frac{1}{x}$ and $f(x) = 1 + x^2$ with f'(x) = 2x. Then, $H(x) = (g \circ f)(x)$. Thus,

$$H'(x) = (g(f(x)))' = f'(x)g'(f(x)) = 2xg'(1+x^2) = \frac{2x}{1+x^2}.$$

3.5 Successive derivatives

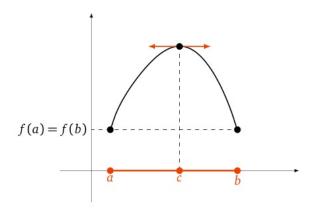
Definition 17 Let $f: I \to \mathbb{R}$. We note $f^{(0)} = f$. Suppose that $f^{(n-1)}$ exists and it is derivable on I. So, we define the function $f^{(n)} = (f^{(n-1)})'$. If the function $f^{(n)}: I \to \mathbb{R}$ exists, then we say that f is n times derivable on I.

Proposition 10 Let $\lambda \in \mathbb{R}$, $m \in \mathbb{N}$, $f, g : I \to \mathbb{R}$ be two functions n times derivable on I. Then, $\forall n \leq m$:

- f + g is n times derivable on I and $(f + g)^m = f^m + g^m$.
- λf is n times derivable on I and $(\lambda f)^m = \lambda f^m$.
- fg is n times derivable on I and $(fg)^m = \sum_{k=0}^m C_m^k f^{(k)} g^{(m-k)}$, where $C_m^k = \frac{m!}{k!(m-k)!}$ · (Leibniz formulat).
- If $\forall x \in I$, $g(x) \neq 0$, then $\frac{f}{g}$ is n times derivable on I.

3.6 Rolle's theorem

Theorem 2 Let $f : [a,b] \to \mathbb{R}$ be a continuous function on [a,b], derivable on [a,b], such that f(a) = f(b). Then, there exists $c \in [a,b[$, such that f'(c) = 0.



Geometric Interpretation: geometrically, the theorem states that there is at least one point $c \in]a.b[$, distinct from a and b, for which the tangent to the curve at this point is horizontal.

Example 10 Let f be a function defined by:

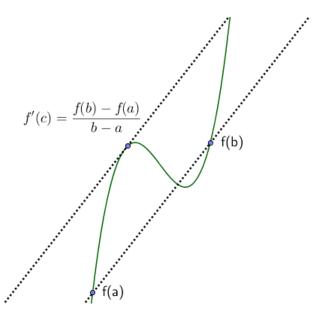
$$f(x) = 3x^4 - 11x^3 + 12x^2 - 4x + 2.$$

Prove that f'(x) = 0 at least once on]0,1[. We have the function f is continuous on [0,1] and differentiable on]0,1[, such that f(0) = f(1) = 2. Then, from Rolle's theorem there exists $x \in]0,1[$, such that f'(x) = 0.

Theorem 3 (Mean value Theorem) Let $f : [a,b] \to \mathbb{R}$ be a continuous function on [a,b] and derivable on [a,b]. Then, there exists $c \in [a,b[$, such that

$$f(b) - f(a) = (b - a)f'(c) \Longleftrightarrow f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Note that $\frac{f(b) - f(a)}{b - a}$ is the direction coefficient of the line connecting (a, f(a)) to (b, f(b)) (which we call a chord between two of the curve of f) while f'(c) is the direction coefficient of the tangent at c.



4 The Hospital Rule

Theorem 4 Let $f, g : I \subseteq \mathbb{R} \to \mathbb{R}$ be two derivables functions and let $x_0 \in I$. Suppose that $f(x_0) = g(x_0) = 0$ and $g'(x) \neq 0$ for all $x \in I - \{x_0\}$.

$$If \quad \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \quad then \quad \lim_{x \to x_0} \frac{f(x)}{g(x)} = l \in \mathbb{R}.$$

Remark 4

- The Hopital's rule removes indeterminations of the form $\frac{0}{0}$ and $\frac{\infty}{\infty}$.
- On the other words, it can be used to determine $\lim_{x\to x_0} \frac{f(x)}{g(x)}$, if when x tends to x_0 , f(x) and g(x) tends to 0 or ∞ .
- According to this rule, if $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = \lim_{x\to x_0} \frac{f(x)}{g(x)}$. Example:

•
$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{0}{0} = \lim_{x \to 0} \frac{\cos x}{1} = 1.$$

•
$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \frac{0}{0} = \lim_{x \to 0} \frac{\frac{1}{1+x}}{1} = 1.$$

• It is possible to apply the Hospital rule several times successively when calculating the limit to remove the case of $\frac{0}{0}$.

Example:

$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} = \frac{0}{0} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x} = \frac{0}{0} = \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = \frac{0}{0} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = 2.$$

Note: The Hospital rule is used to confirm the calculation of limits.

Dr. Kicha Abir