

University of Mohammed Essedik Benyehia Jijel Faculty of technology 2nd year Engineer

Info 3

Introduction to MATLAB®

M. Bouzenita

Outline

Lecture 1: MATLAB Programming Environment	(1 week)
Lecture 2: MATLAB data types and script file	(2 weeks)
Lecture 3: Read, display and save data in MATLAB	(2 weeks)
Lecture 4: Vectors and matrices in MATLAB	(2 weeks)
Lecture 5: if and switch statements, for and while loops	(2 weeks)
Lecture 6: The function file in MATLAB	(2 weeks)
Lecture 7 : Graphics	(2 weeks)
Lecture 8: Using Toolbox	(2 weeks)

Info 3 Introduction to MATLAB®

M. Bouzenita

2nd year Engineer - University of Jijel

Lecture 1

Presentation of computing programming environment MATLAB

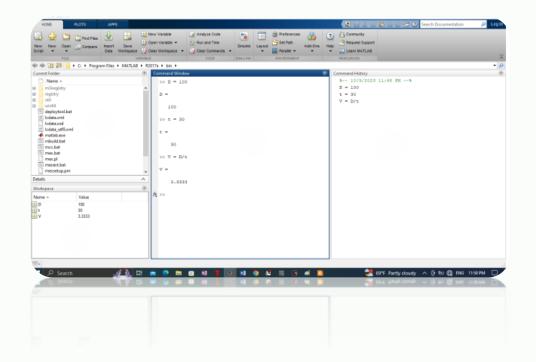
1. Introduction

Nowadays, using programming language to solve scientific problems is indispensable for engineers and those working in many fields such as medicine, biology, finance and others.

2. Computing programming environment

A "computing programming environment" can be defined as software and tools used to write, test, and debug computer programs.

3. MATLAB Programming Environment


MATLAB (MATrix LABoratory) is an **interactive** computing environment developed by MathWorks

Cleve Moler in 1970 and was first released as a commercial product in 1984 at the Automatic Control Conference in Las Vegas

3. MATLAB Programming Environment

MATLAB provides a technical computing environment designed to enable numerical computation and data visualization.

3. MATLAB Programming Environment

MATLAB has:

Toolbox allowing access to symbolic computing abilities

Simulink adds graphical multi domain simulation for dynamic and embedded systems

4. Alternatives numerically oriented programming language

Commercials Alternatives

AMESim, GAUSS, IDL, Maple, Mathcad, Mathematica, OxMetrics, PyIMSL Studio, SAS/IML, Stata (Mata), Sysquake

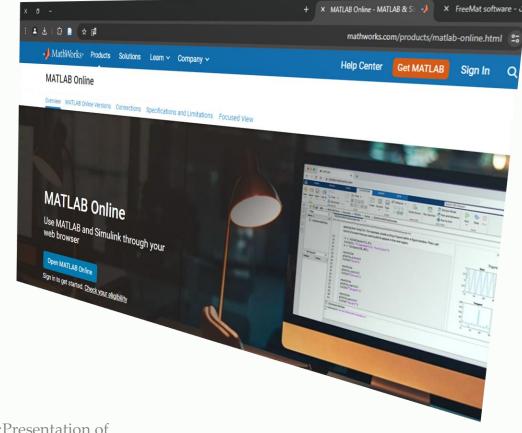
4. Alternatives numerically oriented programming language

Open alternatives

Octave, Scilab, FreeMat,

JMathLib, R, SageMath, SciPy

5. MATLAB online version


Mathworks provides

MATLAB online version

for use anywhere through

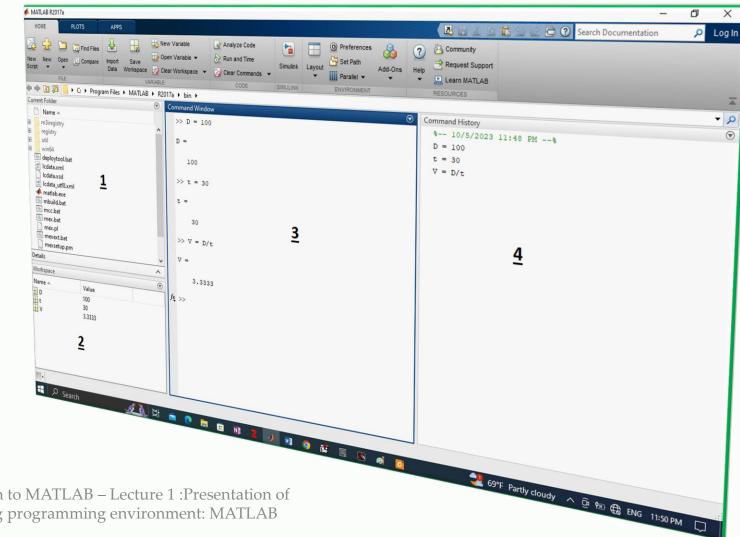
web browser without any

downloads and installation

5. MATLAB online version

Two versions of access are provided:

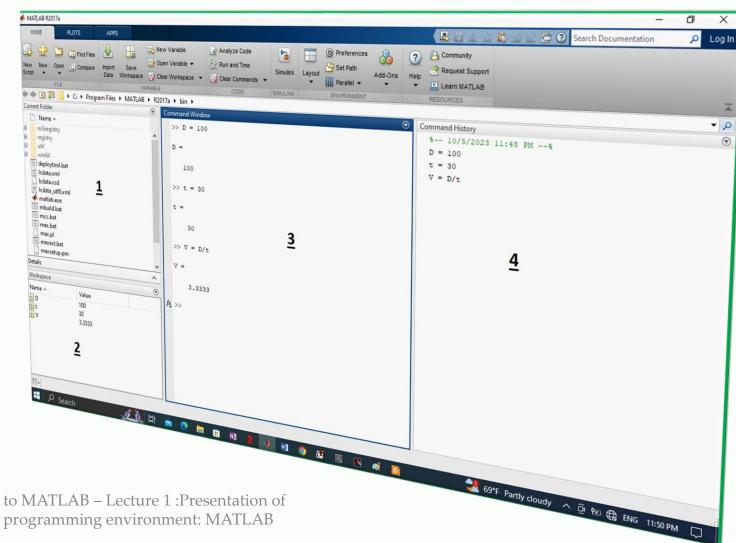
Basic version


offers 20 hours of use/month and access to 10 commonly used products.

Licensed version

provides a **full access** to MATLAB online in addition to desktop version

6. Getting started with MATLAB


- 1. Current folder (File browser): Displays current, the saved and the performed working directory
- 2. Workspace: Refers to the environment where create, store, and manage variables and data during MATLAB session.

Introduction to MATLAB – Lecture 1: Presentation of computing programming environment: MATLAB

6. Getting started with MATLAB

- 3. Command window: is where we can enter commands and see their results. It is the primary interface for interacting with MATLAB
- 4. Command history : allows to view and access the history of commands we have entered during our current session

Introduction to MATLAB – Lecture 1: Presentation of computing programming environment: MATLAB

7. Basic arithmetic

MATLAB uses the standard arirhmetic operators:

```
addition (+),
subtraction (-),
multiplication (*),
division (/ or \)
power (^)
```

```
>> 5 + 3
ans =
     8
ans =
     * 3
ans =
     15
>> 5 / 3
ans =
     1.6667
ans =
      125
```

8. Priority of commands

The arithmetic operators have the following priority:

- 1. Brackets first;
- 2. Power next;
- 3. Multiplication and division next. Left to right in case of competition;
- 4. Addition and subtraction next.

 Left to right in case of competition.

8. Priority of commands

$$2 + 2 / 2 * 3 ^ 2 = 11$$

$$(2 + 2 / 2 * 3) ^ 2 = 25$$

$$(2 + 2 / 2) * 3 ^ 2 = 27$$

9. Variables

Variables in MATLAB are defined by an **identifier name**, which must respect the following rules:

- 1. The variable name must begin with a letter and can contain letters, digits and underscore character (_);
- 2. MATLAB is case sensitive. So, variable named **Var_1** is different from variable named **var 1**;
- 3. MATLAB has **reserved keywords**, which cannot be used as an identifier name (**sqrt**, **exp**, ...)

9. Variables

Variables in MATLAB amust respect the following

- 1. The variable name **1** letters, digits and un
- 2. MATLAB is case sens from variable named
- 3. MATLAB has **reserv** identifier name (**sqr**

>> 5*var

```
>> A = 5
A =
>> Var 1 = A +1
Var 1 =
>> 5var
 5var
Invalid expression. Check for missing multiplication
operator, missing or unbalanced delimiters, or other
syntax error. To construct matrices, use brackets
instead of parentheses.
 Did you mean:
```

9. Variables

Variables in MATLAB amust respect the following

- 1. The variable name **1** letters, digits and un
- 2. MATLAB is case sens from variable named
- 3. MATLAB has **reserv** identifier name (**sqr**

```
>> var_1
Unrecognized function or variable 'var_1'.
Did you mean:
```

>> Var 1

 $Var_1 =$

>> A-1

ans =

10. Some reserved keywords and commands

MATLAB has a list of reserved words and commands. Some of such keywords are :

Functions: sin, cos, sqrt, exp, ...

Constants: pi, i, j, inf ...

Commands: who, whos, ...

11. Reusing previous commands

To rerun previous commands do one of the following:

- Press the up arrow key (↑) until the command you want appears at the prompt, and then press Enter
- Double-click an entry or entries in the Command History window, or select an entry and press Enter.
- To extend the selection to include multiple commands, press Shift+↑.

12. Clearing screen and variables and quitting MATLAB

To **remove items** from workspace **and freeing up system memory**, the following commands are used:

```
clc : clear command window.
clear : removes all variables from the workspace.
clear VARIABLES : does the same thing as the previous command.
clear GLOBAL : removes all global variables.
clear all : removes all variables
clear VAR1 VAR2 : clears the specified variables.
```

To close MATLAB using the command window we type quit or exit.

Practice