
 Le lien existe entre des objets de la même classe

 on considère que l'amitié est réciproque

1

Amie de

*Personne

*

Association réflexive

 Une personne peut avoir des enfants et des parents

2

Association réflexive (2)

 Est-ce que cette représentation est satisfaisante ?

3

Question

 Non

 Il faut tenir compte de la quantité commandée

 Comment peut-on représenter la quantité commandée?

4

Question (2)

 Est-ce que cette représentation est satisfaisante ?

 (1) ou (2) ?

5

Question (3)

(1) Une seule quantité commandée pour tous ceux qui commandent le même article

(2) Une seule quantité commandée pour tous les articles d’une même commande

6

Question (4)

7

Question - Réponse

 La quantité commandée ne peut être ni dans Article ni dans
Commande

 Solution : Créer une classe d’association

 Nécessaire lorsqu’une association possède ces propres
propriétés

 décrire soit des attributs soit des opérations propres à
l’association

8

 Instance unique de la classe-association pour chaque lien entre

objets

Classe - Association

9

 La classe association peut être remplacée par des
associations binaires

Classe – Association (2)

 Les cardinalités se lisent:

 Pour un couple instance de classe 1 et instance de classe 2, il y a
au minimum n1 et au maximum n2 instances de classe 3

10

Classe 1 Classe 3

Nom de

l’association

Classe 2

n1..n2m1..m2

p1..p2

 Association reliant plus de deux classes

 représentée en utilisant un losange

Association n-aire

11

Association n-aire (2)

 Très peu utilisée

 Imprécise

 difficile à interpréter

 souvent source d’erreur

 Utilisée dans la plupart du temps pour esquisser la modélisation au

début du projet, puis elle est remplacée par des associations binaires

afin de lever toute ambiguïté

12

Association n-aire - Conversion

13

Agrégation

 Décrit une relation d’inclusion entre une partie (agrégé) et un

tout (l’agrégat)

 Simple regroupement de parties dans un tout

 La suppression d’une formation ne conduit pas

automatiquement à la suppression des modules

Un losange vide du

côté de l'agrégat

14

 La suppression d’une commande conduira obligatoirement à la

suppression de toutes ses lignes

Composition

 Représente une relation composite/composants

 Une forme forte d’agrégation

 Les cycles de vie de l’objet composite et ses composants sont liés:

 La suppression du composite mène à la suppression de ses

composants

 La composition est exclusive :

 Un composant ne peut être liée qu’à un seul objet composite

Un losange plein du

côté du composite

15

Agrégation - Composition

 Mis en œuvre grâce à deux propriétés qui sont : la généralisation et la
spécialisation

16

Personne Est_un EtreVivant

Héritage

 Un partage hiérarchique de propriétés et de comportements (attributs et

opérations)

 Construire une classe à partir d'une classe plus haute dans la

hiérarchie

 Réutiliser le code

 Eviter la duplication d’attributs et de méthodes

super-classe

sous-classe

Héritant de la classe EtreVivant

Généralisation et spécialisation

 Spécialisation :

 Raffinement d'une classe en une sous-classe

 Généralisation :

 Abstraction d'un ensemble de classes en super-classe

17

Généralisation
Spécialisation

18

Héritage et propriétés/Associations

 La classe enfant possède toutes les propriétés de ses classes parents
(attributs et opérations)

 Toutefois, elle n'a pas accès aux propriétés privées

 Toutes les associations de la classe parent s'appliquent, par défaut, aux

classes dérivées (classes enfant)

19

Principe de substitution

 Une instance d'une classe peut être utilisée partout où une
instance de sa classe parent est attendue

 Exemple:

 Toute opération acceptant un objet d'une classe Animal doit
accepter tout objet de la classe Chat (l'inverse n'est pas
toujours vrai)

Héritage simple et multiple

20

 Une classe peut avoir plusieurs classes parents

 C++ permet son implantation effective

 Java ne le permet pas

 Encapsulation

 Un principe de conception consistant à protéger le cœur d'un système des
accès intempestifs venant de l'extérieur

 Niveaux de visibilité (Rappel)

 (+) public : visible par tous les autres objets

 (-) private : visible seulement depuis l’intérieur de l’objet

 (#) protected : visible par certains objets (les descendants de la classe)

 (package ou ∼ ou rien) : visibilité à l’intérieur du package

21

Encapsulation

22

 Contiennent des éléments de modèle de haut niveau, comme des classes,
des diagrammes de cas d'utilisation ou d'autres packages

 On organise les éléments modélisés en packages et sous-packages

 Exemple d'encapsulation

Package (paquetage)

 Les modificateurs d'accès sont également applicables aux opérations

23

 Un mécanisme permettant à des objets de réaliser les opérations d’une
interface commune de façon propre

 Chaque sous-classe peut modifier localement l’implémentation des ses
opérations pour considérer le particularisme de son niveau d’abstraction

 Possibilité de définir plusieurs opérations avec le même nom

Polymorphisme

24

Polymorphisme (2)

 Surcharge (overload)

 Dans une classe, plusieurs méthodes portant le même nom et avec des
signatures différentes

 N’est pas autorisée par certains langages

 Redéfinition

 Redéfinir une méthode héritée dans la classe fille avec une signature
identique

25

Classe abstraite

 Une classe qui n’a pas d’instances

 Certaines opérations sont abstraites (ne sont pas implémentées)

• Notées en italique

 Nom de la classe en italique (ou stéréotype « abstract »)

classe abstraite

car une forme n'existe pas en soi
opération abstraite

On ne peut pas

calculer la surface

d'une forme sans

savoir de quelle forme

il s'agit

 Si une classe contient une méthode abstraite, elle doit être déclarée

abstraite

 Si une classe hérite d’une classe abstraite, elle doit implémenter les

méthodes abstraites

26

Interface

 Un contrat à respecter par les classes qui réalisent l’interface

 Le contrat est constitué d’une liste d'opérations

 Comme une classe abstraite dont toutes les opérations sont abstraites

 Mais pas une classe,

 Ne peut pas servir à créer des objets

<<interface>>

UneInterface

UneClasse

opérations()
opérations()

On utilise une relation de type réalisation entre une interface et une classe qui

l'implémente

Notation: stéréotype <<interface>>

27

Interface (2)

28

Interface (3)

 Une classe qui réalise une interface doit implémenter toutes ses
opérations

 Une classe peut réaliser plusieurs interfaces

 Une interface peut hériter d’autres interfaces

29

Attribut dérivé

 Peut être calculé à partir d'autres informations du système (d’autres
attributs et des formules de calcul)

 Notation : /attribut

 Peut nécessiter des informations de plusieurs classes

 Lors de la conception, il peut être utilisé comme marqueur jusqu'à
ce qu’on puisse déterminer les règles à lui appliquer

30

Association dérivé

 Peut être calculé à partir d'autres informations du système

 Notation : /association

31

Attribut de classe (static)

 Par défaut, les valeurs des attributs définis dans une classe diffèrent
d'un objet à un autre

 Parfois, il est nécessaire de définir un attribut de classe qui garde une
valeur unique et partagée par toutes les instances

Commande

date: Date

conditionsDeVente : string

un attribut de classe est souligné

32

Opération de classe

 Semblable aux attributs de classe

 Une propriété de la classe, et non de ses instances

 N'a pas accès aux attributs d’objets de la classe

Commande

getNbEnCours() : string

calculerTotal()

