University Mohammed Seddik Benyahia-Jijel-Faculty of Natural and Life Sciences

Biology Department

1st year License

Module: Mathematics 1

Series of Exercises $N^{\circ}4$ 2025-2026

Exercise $n^{\circ}1$. Determine and represent the domain of the function f:

1.
$$f(x,y) = \frac{x^2}{y - 2x^2}$$
,

2.
$$f(x,y) = \frac{x^2 + y^2}{x + y}$$
,

3.
$$f(x,y) = \sqrt{xy}$$
,

4.
$$f(x,y) = \sqrt{y - x^2}$$
,

5.
$$f(x,y) = x^2 + y + \ln(x^2 + y^2 - 2)$$
.

Exercise $n^{\circ}2$. Calculate the following limits :

1.
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2+xy}$$
.

2.
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^3}$$
 (Leave to students)

Exercise $\mathbf{n}^{\circ}\mathbf{3}$. Study the continuity of the following functions on \mathbb{R}^{2} :

1.
$$f(x,y) = \begin{cases} y^2 \sin\left(\frac{x}{y}\right), & y \neq 0\\ 0 & y = 0 \end{cases}$$

2.
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 (Leave to students)

Exercise $n^{\circ}4$.

(I) Calculate the gradient of the function f at the considerate point :

(i).
$$f(x,y) = \frac{x^2}{y - 2x^2}$$
, at $a = (1,1)$, (ii). $f(x,y) = \sqrt{1 + x^2y^2}$, at $a = (1,2)$.

- (II) Calculate the first partial derivatives of the following functions:
 - 1. $f(x, y) = e^x \tan(y)$.
 - 2. $f(x,y) = x^3 + y^3 3xy$.
 - 3. $f(x,y) = \sqrt{x}\cos(y)$.
 - 4. $f(x, y, z) = xe^{\frac{y}{z}}$.
 - 5. $f(x, y, z) = \frac{xz}{x^2 + y^2}$
 - 6. $f(x,y) = \ln\left(\frac{x+y}{y}\right)$.

Leave to students: (1), (2) and (3).

- (III) Calculate the second partial derivatives of the following functions:
 - 1. $f(x,y) = x^2(x-y)$.
 - 2. $f(x,y) = \ln(x + \sqrt{x^2 + y^2})$.
 - 3. $f(x,y) = x^4 + y^3 + 2y\cos(x) + 5y$.
 - 4. $f(x,y) = \sqrt{1 + x^2 + y^2}$.

Leave to students: (1) and (4).

Dr. Kicha Abir