

Nom : Prénom: Groupe :

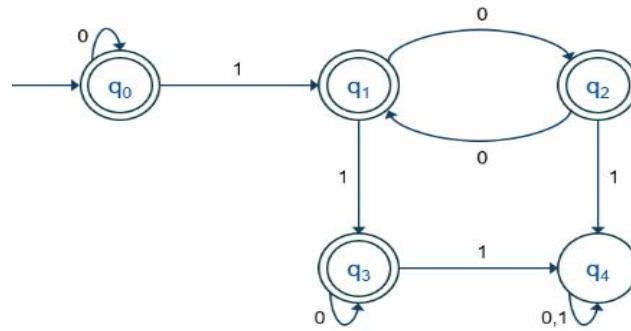
TEST - Answers

(Duration: 45 minutes - No electronic devices or documents permitted)

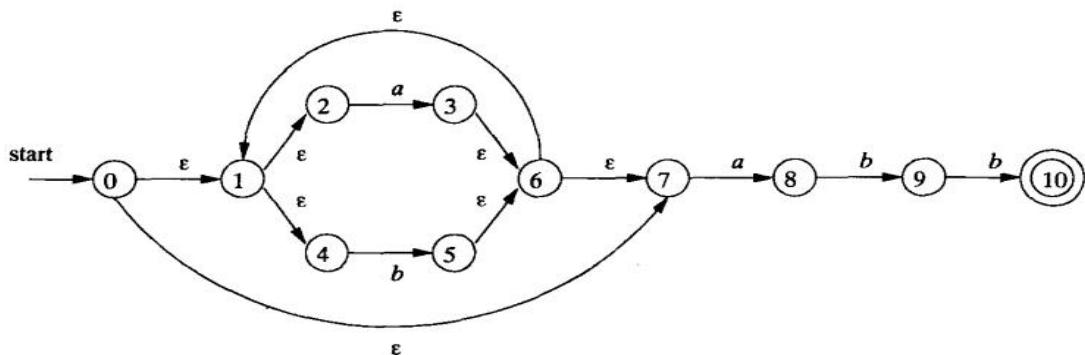
Exercise 1 (6 pts)

- Consider the following CFGs : G1, G2, G3 and G4
 - Check whether **G1** is **ambiguous or unambiguous**.
 - Remove **ϵ -productions** from **G2**.
 - Eliminate **left-recursion** in **G3**.
 - Describe the language defined by **G4** using a regular expression.

Grammar	Answer
G1 $S \rightarrow AaS \mid BaBb \mid Ab$ $A \rightarrow a \mid b$ $B \rightarrow b$	<p>This grammar is ambiguous for the string : 'babbb'</p> $\begin{array}{ll} S \Rightarrow \underline{B}aBb & S \Rightarrow \underline{A}aS \\ S \Rightarrow \underline{b}a\underline{B}b & S \Rightarrow \underline{b}a\underline{S} \\ S \Rightarrow babb & S \Rightarrow baAb \\ & S \Rightarrow babb \end{array}$ <p style="text-align: right;">(1 pts)</p>
G2 $S \rightarrow XYX \mid XX \mid XY \mid YX \mid Y \mid X \mid \epsilon$ $X \rightarrow 0X \mid \epsilon$ $Y \rightarrow 1Y \mid \epsilon$	$\begin{array}{l} S \rightarrow XYX \mid XX \mid XY \mid YX \mid Y \mid X \mid \epsilon \\ X \rightarrow 0X \mid 0 \\ Y \rightarrow 1Y \mid 1 \end{array}$ <p style="text-align: right;">(2 pts)</p>
G3 $S \rightarrow Aa \mid b$ $A \rightarrow Ac \mid Sd \mid \epsilon$	<p>By replacing $A \rightarrow Sd$ with $A \rightarrow (Aa)d \mid bd$:</p> $\begin{array}{l} S \rightarrow Aa \mid b \\ A \rightarrow Ac \mid Aad \mid bd \mid \epsilon \end{array}$ <p>Eliminating left-recursion :</p> $\begin{array}{l} S \rightarrow Aa \mid b \\ A \rightarrow bdA' \mid A' \\ A' \rightarrow cA' \mid adA' \mid \epsilon \end{array}$ <p style="text-align: right;">(2 pts)</p>
G4 $S \rightarrow 0A1 \mid 1A0$ $A \rightarrow 0A \mid 1A \mid \epsilon$	$0(0 1)^*1 \mid 1(0 1)^*0$ <p style="text-align: right;">(1 pts)</p>


Exercise 2 (3 pts)

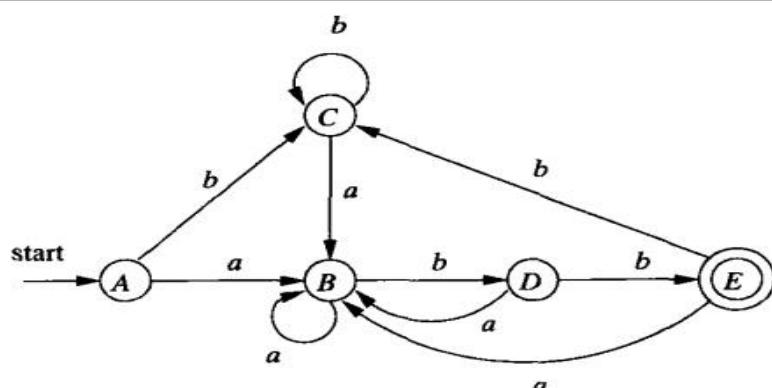
Let L be the language of all strings over $\{0,1\}$ that do not contain a pair of 1 that are separated by an odd number of symbols.


- Give the state diagram of a DFA with 5 states that recognizes L .

DFA

(3 pts)

Exercise 3 (5 pts) : Convert the following NFA to a DFA :


Answer

Final Transition Table

$\varepsilon - closure(0) = \{0, 1, 2, 4, 7\}$, $\varepsilon - closure(1) = \{1, 2, 4\}$, $\varepsilon - closure(2) = \{2\}$
 $\varepsilon - closure(3) = \{3, 6, 7, 1, 2, 4\}$, $\varepsilon - closure(4) = \{4\}$
 $\varepsilon - closure(5) = \{5, 6, 7, 1, 2, 4\}$, $\varepsilon - closure(6) = \{6, 7, 1, 2, 4\}$
 $\varepsilon - closure(7) = \{7\}$, $\varepsilon - closure(8) = \{8\}$
 $\varepsilon - closure(9) = \{9\}$, $\varepsilon - closure(10) = \{10\}$

δ'	a	b
(1 pts) $\rightarrow \{0, 1, 2, 4, 7\}$	$\{3, 6, 7, 1, 2, 4, 8\}$	$\{5, 6, 7, 1, 2, 4\}$
(1 pts) $\{3, 6, 7, 1, 2, 4, 8\}$	$\{3, 6, 7, 1, 2, 4, 8\}$	$\{5, 6, 7, 1, 2, 4, 9\}$
(1 pts) $\{5, 6, 7, 1, 2, 4\}$	$\{3, 6, 7, 1, 2, 4, 8\}$	$\{5, 6, 7, 1, 2, 4\}$
(1 pts) $\{5, 6, 7, 1, 2, 4, 9\}$	$\{3, 6, 7, 1, 2, 4, 8\}$	$\{5, 6, 7, 1, 2, 4, 10\}$
(1 pts) * $\{5, 6, 7, 1, 2, 4, 10\}$	$\{3, 6, 7, 1, 2, 4, 8\}$	$\{5, 6, 7, 1, 2, 4\}$

State Diagram

