Génie Logiciel

Chapitre 5
Diagrammes UML : vue dynamique

Partie 2: Diagrammes d’états/transitions
UML

Niveau: 3¥me année Licence informatique
Année: 2025/2026

Diagrammes d’états/transitions
UML

Introduction

» Un diagramme d’états-transitions décrit le comportement interne
d’'un objet a 'aide d’'un automate a états finis.

= Un objet peut passer par une série d’'états pendant sa durée de vie.

= Les objets changent d'état en reponse a des evenements extérieurs
donnant lieu a des transitions entre états.

= Sauf cas particuliers (lorsque il y a concurrence), a chaque instant,
chaque objet est dans un et un seul état.

Etat et transition

= Les états sont représentés par des rectangles aux coins arrondis (ou en
compartiments).

= Les transitions sont représentées par des arcs orientés liant les états entre
eux.

= Certains états, dits « composites », peuvent contenir des sous-diagrammes.

allumée) On

Off On

éteinte) Off

Diagramme d'états-transitions

» L'organisation des états et des transitions pour un classeur donne
est représentée dans un diagramme d'états-transitions.

= Le modele dynamique comprend plusieurs diagrammes d'états.

= Attention !!!
» Chague diagramme d'états ne concerne gqu'une seule classe.

= Chaque automate a états finis s'execute concurremment et peut
changer d'état de facon indépendante des autres.

Exemple de diagramme d'états-transitions

créée

5

ouverte \

maximiser()

o —

Init |
e normale >(agrandie
s 3 <
Init 2 QJ) maximiser() ™
positionner() dimensionner()

@e minimiser() minimiser()
Final réduite

Etat initial et état final

= ['etat initial est un pseudo-état qui définit le point de départ par
déefaut pour l'automate ou le sous-état.
= Lorsgu'un objet est crée, il entre dans I'etat initial.

o—

= ['etat final est un pseudo-état qui indique que I'exécution de
l'automate ou du sous-état est terminée.

@

Evénement déclencheur

= Un évenement est quelque chose qui se produit pendant I'exécution
d’'un systeme et qui mérite d’étre modelise.

» Un diagramme d’états-transitions spécifie les réactions a des
évenements.

= Un évenement se produit a un instant précis et est dépourvu de
durée.

= Quand un événement est recu, une transition peut étre declenchée
et faire basculer 'objet dans un nouvel état.

Types d’evenement

Signal

v" Un message asynchrone recu par I'objet.

v' Exemple : signalErreur envoyé par un capteur déclenche la transition
vers I'état EnPanne.

Appel

v' Déclenché lorsqu’une méthode est appelée sur I'objet.

v Exemple : 'appel minimiser() fait passer I'objet de Ouverte a Réduite.

Changement

v' Se produit lorsqu’une condition devient vraie.

v Exemple : when (temperature > 40) déclenche une transition vers
Surchauffe.

Temporel

v' Déclenché par le temps (aprés un délai ou a un instant donné).

v Exemple : after(5s) quitte I'état Inactif apres 5 secondes.

Transition simple

= Une transition entre deux états est représentée par un arc qui les lie l'un a
l'autre.

v Elle indique qu'une instance peut changer d'état et exécuter certaines
activites, si un événement déclencheur se produit et que les conditions de
garde sont verifiées.

= Sa syntaxe est la suivante :

nomEvenement (params) [garde] / activité

v' La garde désigne une condition qui doit étre remplie pour pouvoir
déclencher la transition,

v' L'activité désigne des instructions a effectuer au moment du tir.

(- } événement [garde] / activité)(-)

10

Transition simple (2)
= Exemple

minimiser() [estVerrouillée == false] / enregistrerPosition()
[Ouverte] >L Réduite]

v Evénement : minimiser()
v Garde : la fenétre ne doit pas étre verrouillée

v Activité : sauvegarde de la position avant réduction

11

Transition interne

Un objet reste dans un etat durant une certaine duree et des
transitions internes peuvent intervenir.

Une transition interne ne modifie pas |'état courant, mais suit
globalement les regles d'une transition simple entre deux états.

Trois déclencheurs particuliers sont introduits permettant le tir de
transitions internes : entry/, do/, et exit/.

12

Transition interne- Déclencheurs
predeéfinis

entry
v définit une activité a effectuer a chaque fois que I'on rentre dans I'état
considere.

exit
v définit une activité a effectuer quand on quitte I'état.

do

v définit une activité continue qui est réalisée tant que I'on se trouve dans
I'état, ou jusqu'a ce que le calcul associé soit terminé.

/ saisie mot de passe \

entry/ set echo invisible
character/ traiter cararctere
help/ afficher aide

Qit/ set echo normal /
13

Point de jonction

Permet de factoriser des segments de transition.
Objectif : aboutir a une notation plus compacte ou plus lisible des

chemins alternatifs.

Toutes les gardes le long d’'un chemin doivent s’évaluer a vrai des le

franchissement du premier segment.

eax and b>0]

ella=l)

)

Etat3
~

 E—
Etat4

~

) EE—
Etats

—

14

Point de décision

Possede une entrée et au moins deux sorties.

Les gardes situees apres le point de decision sont evaluées au
moment ou il est atteint.

Une fois le point de décision atteint, au moins un chemin doit étre
franchissable.

saisie] go/validerEntrée() [entrée valide] demander
formulaire J confirmation

[else]

(afficher
L probléemes

15

Etat composite

= Estun état decomposeé en régions contenant chacune un ou plusieurs
sous-états

= Plus d’'une région : état orthogonal
v' Les régions sont concurrentes

= Une seule région : état non orthogonal

= Tout diagramme d’états-transitions est contenu dans un état composite
enveloppant

Composer numéro \

C Début 3 (Numéroter) ; :
[numéro.valide()]

entry/tonalité « prét » oy o
s e e Tl chiffrer(n] |entry/numero.append(n)
. S 2 J y,

chiffrer(n)

SN o

Composer
numéro

16

Historique

= Etat historique plat
v" Un pseudo-état historique est noté par un H cerclé

v"Une transition ayant pour cible le pseudo-état historique est équivalente a une
transition qui a pour cible le dernier état visité dans la région contenant le H

= Etat historigue profond
v' H* désigne un historique profond, cad un historique valable pour tous les niveaux

d'imbrication
Traitement
@’ reprendre (Traite
t (N Interruption
/ Traitement | \ / Traitement 2 \
— —— L'utilisation d’un historique profond permet
@ —> :u ® k21 —— _ deretrouver, aprés une interruption, le
e/ S TP sous-état précédent. A la figure, I'utilisation
p g
\ y d’un historique de surface H, au lieu de H*,
i, . >@ permettrait de retrouver I'état Traitementl
e K22 ou Traitement2 dans leur sous-état initial,
\ / \ mais pas les sous-états imbriqués E11,
N J / E12, E21, E22, qui étaient occupés avant

I'interruption.
17

Interface des états composites

= Pour pouvoir représenter un sous état indépendamment d'un macro-état, on a
recours a des points de connexion.

v" Avec un X pour les points de sortie
v" Vides pour les points d'entrée

= Ces interfaces permettent d'abstraire les sous-états des macro-états (réeutilisabilité)

Test opérateur

/ distribuer boisson \
1 |crédit < prix|
vérifier crédit J
[erédit >= prix]
J préparer
boisson
Produit épuisé Erreur matérielle

Erreur boisson non distribuée

Crédit insuffisant

18

Etat concurrent

= Avec un séparateur en pointillés
v' On peut représenter plusieurs automates s'exécutant indépendamment
v' On parle des régions

| |

Un objet peut alors étre simultanément dans plusieurs etats concurrents

-

boisson sélectionnée \

~

. . . ¢ TR
préparer boisson (terminer preparation

entry/placer gobelet do/ajouter sucre | > @
do/servir liquide) exit/signal sonore

[rendre monnaie \

‘ Tlr_v/monnuic: credit - boisson.prix() >@

do/monnayeur.rendre(monnaie) /

19

Etat concurrent

= Avec un séparateur en pointillés
v' On peut représenter plusieurs automates s'exécutant indépendamment
v' On parle des régions

| |

Un objet peut alors étre simultanément dans plusieurs etats concurrents

-

boisson sélectionnée \

~

. . . ¢ TR
préparer boisson (terminer preparation

entry/placer gobelet do/ajouter sucre | > @
do/servir liquide) exit/signal sonore

[rendre monnaie \

‘ Tlr_v/monnuic: credit - boisson.prix() >@

do/monnayeur.rendre(monnaie) /

20

Transition concurrente

= Une transition Fork correspond a la création des états concurrents
= Une transition Join correspond a une barriere de synchronisation qui
supprime la concurrence

v' L'exécution ne peut continuer gu’une fois que toutes les taches
concurrentes ont atteint le Join.

(prépurer boisson) Ferminer préparation]

entry/placer gobelet do/ajouter sucre
do/servir liquide p exit/signal sonore

gobelet bloqué
nominal

tl‘)/;l fficher « retirer boisson J

(rendre monnaie h
entry/monnaie= credit - boisson.prix()
do/monnayeur.rendre{monnaie))

gobelet retiré/

fork

1o

21

Questions

