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Chapitre 5

Fonctions dérivables

5.1 Notion de dérivée

Soit f une fonction définie sur un intervalle ouvert I et soit x¢ € I.

Définition 5.1.1.
) — flx
e La fonction f est dérivable en xg st le taux d’accroissement M admet une
r — X
limite finie lorsque x tend vers xy.

Cette limite s’appelle alors le nombre dérivé de f en xg et est noté ['(xq). Ainsi :

flz) = f(wo)

T—T0 xr — 1'0

e La fonction f est dérivable sur ["intervalle ouvert I si elle est dérivable en tout point
Ty de 1.

Dans ce cas, la fonction qui a tout x € I associe le nombre dérivé f'(x) est appelée

: d
fonction dérivée de f sur I, notée [ ou —f

dx

Remarque. En posant h = x — xy, on obtient la formulation équivalente :

() = lim f(xo+h) — f(%)_

h—0 h

Exemples.

1. Soit f(x) = 22® — 3x + 1. Montrons que f est dérivable sur R.
Pour tout xoy € R, calculons le tauzr d’accroissement :

f(x) — flzo)  (22* =3z +1) — (22 — 3z0 + 1)

T — Zo T — X
_ 2(a? — ) — 3(x — @)
B T — X
2(z — xo)(z + o) — 3(x — x0)
B T — To
= 2(.T +.CI?0) -3



Quand x — x4, on obtient :

f'(zo) = xli_>r£:10[2(x +x9) — 3] =2(2x0) — 3 =4x9—3

Donc f est dérivable sur R et f'(x) = 4z — 3.

2. Soit f(z) = cosx. Montrons que f est dérivable sur R.
Pour tout x¢ € R, calculons le tauz d’accroissement :

f(z) — f(xo) | COST — CO8

T — X T — Zo
En utilisant [’identité trigonométrique cosp — cosq = —2sin (p—;rq) sin (’%), on
obtient :
_2 : x+x0 : T—x0
COS & — COS g SHL | =5 | S { =
r — 2o r — T
: xr—x0
. [T+ xo\ S (T)
= —sin 5 T

2

Quand x — xg, on a :
sin (”%) — sin zg

sin( 2520
% — 1 (limite fondamentale)
2

Donc :
: (x4 ae) sin (T : .
f'(x0) = JE?O [—sm < 5 O) : x(_;j )] = —sinxzy -1 = —sinx
Ainsi, f est dérivable sur R et f'(xr) = —sinz.

e Interprétation géométrique de la dérivée

La dérivée d'une fonction en un point possede une interprétation géométrique fonda-
mentale. Soit f une fonction dérivable en z et soit C; sa courbe représentative.




e Explication du schéma :
— Point fixe A : A(xzg, f(x0)) est le point ou 'on étudie la dérivée
— Point mobile M : M(x, f(x)) est un point variable sur la courbe

— Droite tangente : Lorsque © — xg, le point M se rapproche de A et la droite (AM)
tend vers la tangente a la courbe en A

— Equation de la tangente : Si f est dérivable en x(, 'équation de la tangente a C;
au point A(zo, f(xg)) est :

y = ['(z0)(x — w0) + f(0)

Cette équation montre que :

— Le coefficient directeur de la tangente a la courbe au point d’abscisse x( est
(o)
— La tangente passe par le point (g, f(xo)).

Proposition 5.1.1. (Caractérisation de la dérivabilité). La fonction f est dérivable en
xo si et seulement s’il existe £ € R (qui sera f'(xq)) et une fonction € : I — R telle que :

o c(x) parendl
o f(z)= f(wo) + l(xr — x0) + (v — w0)e(x).

Démonstration. (=) : Supposons f dérivable en z,. Alors par définition :

o) — tim 18 = T ()

T—T0 xr — 'TO

Posons ¢ = f’(xg) et définissons la fonction & par :

f(x) — f(@o)

r — Xy

e(x) =

—{ pour x # xy, et e(xg) =0

Alors on a bien :
f(@) = flxo) + Uz — o) + (x — mo)e()
et par construction :

lim e(z) = lim
T—T0 T—T0

(f(x) — [ (20)

T — X9

—E) = f'(xg) — =0
(<) : Supposons qu'il existe £ € R et ¢ avec e(x) — 0 telle que :

f(x) = f(wo) + Lz — x0) + (7 — 20)e(7)

Alors pour x # xg :

f(@) — f(@o)

. (+¢e(x)
et donc :
g, w =0+ Jim ele) = ¢
Ce qui prouve que f est dérivable en xg et que f'(zq) = ¢. ]

4



Définition 5.1.2.
— La dérivée a droite de f en xq est définie par :
x) — f(x
PGB
m—)ma' T — To
st cette limite existe et est finie.
— La dérivée a gauche de f en xy est définie par :

fm) — tim 1@ = )

TTy T — Zo
si cette limite existe et est finie.

Proposition 5.1.2. Une fonction f est dérivable en xq si et seulement si :
e f admet une dérivée a gauche et une dérivée a droite en xq et
o fi(w0) = fi(wo)

Dans ce cas, f'(xo) = f;(xo) = fi(xo).

Proposition 5.1.3.
i) Si f est dérivable en xo alors f est continue en xg.
it) Si f est dérivable sur I alors f est continue sur I.

Démonstration.
i) Supposons que f est dérivable en zy. Alors par définition :

o F@) = flw)

T—T0 xr — l’o

= ['(xo)
Considérons la différence f(z) — f(xo) que nous pouvons réécrire comme :

F(@) = flao) = PO ZI@)

T — Zo

Lorsque z — xg, on a :
f(@) — f(xo)
r — 2o
r—1x9—0

— f'(z0) (par dérivabilité)

Donc par produit des limites :

xligggo[f(w) — f(zo)] = f'(20) - 0=0
Ce qui équivaut a :

lim f(z) = f(xo)

Tr—x0

Ainsi, f est continue en xg.

i1) Si f est dérivable sur I, alors f est dérivable en tout point zy € I. D’apres le
premier point, f est donc continue en tout point xy € I, ce qui signifie que f est continue
sur 1. O



Remarque. La réciproque est fausse : une fonction peut étre continue en un point sans
étre dérivable en ce point. Par exemple, la fonction valeur absolue f(z) = || est continue

en 0 mais n’est pas dérivable en 0. En effet, étudions la dérivabilité en 0 en calculant la
limite du taux d’accroissement :

@) = )
z—0 x—0 z—0
Calculons les limites a gauche et a droite :

— Limite a droite : Pour x > 0, |z| =z, donc :

. x . €
lim i = lim — =1
z—0t I z—0+t 2T

— Limite a gauche : Pour x <0, |z| = —z, donc :

lim m: lim _—x:—l
=0~ T =0~ T

Les limites a gauche et a droite sont différentes :

T R T

z—0" I =0t T

Donc la limite lim,_, |§—| n’existe pas.
Ainsi, f n’est pas dérivable en 0.

pente = pente = 1

> T

La fonction valeur absolue présente un point anguleux en 0 :
— A droite de 0, la courbe a une pente de +1
— A gauche de 0, la courbe a une pente de —1

— Il n’y a pas de tangente unique en 0

5.2 Opérations sur les fonctions dérivables

Proposition 5.2.1. Soient f et g deux fonctions dérivables en xy et A\, u € R.
1. Combinaison linéaire : (\f + pg)' (zo) = M\f'(z0) + pg' (xo)
2. Produit : (fg)'(z0) = f'(z0)g(x0) + f(20)g' (x0)

. 1)’ f'(x0)
3. Inverse : Si f(xo) # 0, alors () (w0) = ———5
! (f(x0))



o) — f(;fo)g'(xo)
(9(0)

J. Quotient : Si g(wo) # 0, alors (Jg” ) (o — 08

Démonstration.
1. Combinaison linéaire :

(\f + pg) (o) = Tim 2L H#9)(@) = A + 19) (o)

Tr—xQ x — xo

. (Af(x) ~ f(z0)

T—x0

R

= Af'(20) + 119’ (20)
2. Produit :

(Fo)' (o) = lim 229) = J(xo)g(wo)

— iy, (£~ ot + ot = o)
=t (ot " e * 20

= g(x0) f'(x0) + f(20)g' (o)

car g est continue en x( (dérivable implique continu).

3. Inverse

1\ 11
() (20) = lim 18 760

f Tr—xQ € — xo

f(zo) — f(2)

1 'f(m)_f(mo)

car f est continue en xq et f(zg) # 0.

1
4. Quotient : en écrivant i = f - — et en utilisant les regles du produit et de I'inverse :
g g

il:l::/x-l x._g/(x())
(g)(o) [ (o) g(:po)+f( 0) ( (g(xo))Z)

J'(@0)g(@o) = J(0)g' (o)
(9(330))

Exemples.



1. Dérivée de f(x) = 3z* — 2z +5
f'(x) =3(2z) —2(1) + 0 = 62 — 2
2. Dérivée de f(x) = xsinx

f'(x)=1-sinzx+z-cosx =sinx + xcosz
T

3. Dérivée de f(x) =

2+ 1

gy L@+ l)—z-(22) 2*4+1-22 1-2a°
N e e o

Proposition 5.2.2. (Dérivée d’une fonction composée). Soient f -1 — J et g:J — R
deux fonctions telles que :

— f est dérivable en xo € 1

— g est dérivable en f(zo) € J

Alors g o f est dérivable en xq et :

(g0 f)(20) = g'(f(x0)) - f'(o)-

Démonstration. Soient f dérivable en x( et g dérivable en f(x(). On a :

9(f(x)) = 9(f(x0)) _ 9(f(x)) = g(f(20)) f(x)— f(x0)

T — fz) — f(xo) x — 0
Quand = — zg, on a f(x) — f(zo) par continuité de f en xy. Donc :
g(f (37)) 9(f (o))

lim =4 (f(x
) f(2) ~ )
. Xr) — Zo /
1 _— =
M f'(o)
Par produit des limites, on obtient :
(g0 f)(x0) = g'(f(z0)) - '(20)
[
Exemples.
1. Soit Y(x) = cos (e"’“"2 -In(2x + 1))
Cette fonction est dérivable sur | — %, +oo[ car :
— u(z) = e* est dérivable sur R

— v(z) = In(2z + 1) est dérivable sur | — L, 400
— w(t) = cos(t) est dérivable sur R
Par la Proposition :

d

P'(z) = —sm( In(2z + 1 2 n (2z + 1)}

dx
— i n(2z + 1)) - (22¢” (20 + 1 2e”
_—sm( (2z + xe” In(2z + )+2x+1



2. Soit h(z) = esin(#*+32) - Cette fonction est la composée de trois fonctions dérivables
sur leur domaine de définition :

— f(z) = 2* + 3z est dérivable sur R
— g(u) = sin(u) est dérivable sur R
— k(v) = e" est dérivable sur R
Par la Proposition[5.2.3, h =kogo f est dérivable et :
W(z) = (2x + 3) - cos(x? + 3z) - @ +32)
Corollaire 5.2.1. Soit f : I — J une fonction bijective et dérivable en xy € I telle que
f'(zo) # 0. Alors sa fonction réciproque f~1 : J — I est dérivable en yo = f(xo) et :
1 1
7 (yo) = =
= 5 = )

Démonstration. On a f~!o f =id;. En dérivant cette composition en z :

(f7" o f) (wo) = (f 7)) (f(x0)) - f'(wo) = 1

Donec :
1 1

Filwo) — (o))

(f ) (o) =
O

Exemple. Soit f(x) = 2® + 2, qui est bijective sur R car continue et strictement crois-
sante.

Sa fonction réciproque est f~(y) = Jy — 2.

La dérivée de f est f'(z) = 3x°.

Par le Corollaire[5.2.1, pour tout y dans l'image de f :

5.3 Dérivées successives

Soit f : I — R une fonction dérivable et soit [’ sa dérivée. Si la fonction f': [ — R
est aussi dérivable on note f” = (f’)" la dérivée seconde de f.
Plus généralement on note :

A A L R G e
Si la dérivée n-ieme (") existe on dit que f est n fois dérivable.
Théoréme 5.3.1. (Formule de Leibniz). Si f et g sont n fois dérivables en xq € I, alors

(F-9) (o) = 3 (Z)ﬂ"“ (20) - 9 (20).

k=0

Rappelons que le coefficient binomial est défini par :

n n!
<k> " kl(n—k)!
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Démonstration. La preuve de la formule de Leibniz se fait par récurrence sur n en utilisant

la relation de Pascal :
n+1 n n
= 1<k<n.
(0 =)+ (1) s

Exemple. Calculer la dérivée n-ieme de f(x) = In(x) - 3.
On pose :

u(z) =In(z) et v(z)=2"

Calculons explicitement les dérivées successives de u :

u(x) = In(x)
u'(z) = o= z 1
U//(.T) _ —.7}_2
u® (z) = 2273
u(z) = -2 3274

Par récurrence, on montre que pour k >1 :
uh (z) = (=) (k= 1D)1a*

Pour v(z) =2*, on a :

() =
v (z) = 322
v (z) = 62
v®(z) =6
v® () =0 pour k>4

Par la formule de Leibniz :

Comme v (z) = 0 pour k > 4, seuls les termes k = 0,1,2,3 contribuent :

0
+ (Z) W) ()0 (z) + (g) W) (2)0® ()

1) =(3 )@ @)+ (a0 o)

En substituant les expressions :
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:<n> tn -l 2P
0
(n) — gD . 342
1
+ <n> — a2 6y
2
+ (Z) )z g

En simplifiant les puissances de x :

fP@) =(=1)""(n - Dlz
+3n(=1)""2(n - 2)1z* "
+3n(n — 1)(=1)"3(n - 3) 2>
+nn—1)(n—2)(=1)""*(n —4)! 2>~

Finalement, pourn >4 :

FO @) =27 ((=1)" " (n = 1)+ 3n(=1)"2(n — 2)!
+3n(n — 1)(=1)"*(n = 3)! + n(n — 1)(n — 2)(=1)"*(n — 4)!)

5.4 Extremums

Définition 5.4.1. (Point critique et extremum local). Soit f : I — R une fonction définie
sur un intervalle I C R, et soit xg € 1.

1. On dit que xq¢ est un point critique de f si f'(xg) = 0.

2. On dit que f admet un mazimum local en xy s’il existe un intervalle ouvert J
contenant xq tel que :
Vrelnd, f(z)< flxo)

3. On dit que f admet un minimum local en xy s’il existe un intervalle ouvert J conte-
nant xo tel que :
Veelnd, f(z)= f(zo)

4. On dit que f admet un extremum local en xy si f admet un maximum local ou un
minimum local en ce point.

Définition 5.4.2. (Eztremum global). Soit f : I — R une fonction définie sur un inter-
valle I C R, et soit xg € 1.

1. On dit que f admet un maximum global (ou absolu) en xq si :
veel, f(z)< f(zo)
2. On dit que f admet un minimum global (ou absolu) en xq si :

Veel, f(z)> f(xo)
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3. On dit que f admet un extremum global en xq si f admet un maximum global ou un
minimum global en ce point.

f(z) f(z) = sin(2z) + 0.5
4+ .
maximum gllobal
—_
21 maximum local
L x |
—1 1 2 3 4 5
—9 1l

Théoreme 5.4.3. (Théoréme de Fermat). Soit f : I — R une fonction définie sur un
intervalle ouvert I C R, et soit xg € I.
Si f est dérivable en xy et admet un extremum local en xqg, alors :

f/<I0) = O

Démonstration. Supposons que f admette un maximum local en xg. Il existe donc o > 0
tel que pour tout h avec |h| < a, on ait f(xg + h) < f(xo).

Pour h > 0, on a :
f(xo +h) — f(x0)
h

En passant a la limite quand h — 07, on obtient f'(xq) < 0.
Pour h <0, on a :

f(xo+h) = f(o)
h

<0

>0 (car le numérateur est < 0 et le dénominateur < 0)

En passant a la limite quand h — 07, on obtient f’(zq) > 0.
On conclut que f'(x¢) = 0.
Le cas d’un minimum local se démontre de maniere analogue. O

4 1
Tangente horizontale: f/(0) =0

Maximy

1
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5.5 Théoréme de Rolle et Théoréme des Accroisse-
ments Finis

Théoréme 5.5.1. (Théoréme de Rolle) Soit f une fonction telle que :
(i) f est continue sur [a,b]

(ii) [ est dérivable sur la,b|

(i) f(a) = /(1)

Alors il existe au moins un point ¢ €|a, b| tel que : f'(c) = 0.

e Interprétation géométrique

f(x)

A

Exemples.

1. Soit f(x) = 2® — 4z + 3 sur [1,3].
— f continue et dérivable sur R
— f(1)=1-443=0, f3)=9-124+3=0
— fllr)=2x—-4=0=a2=2¢€]1,3]

Le point ¢ = 2 vérifie f'(2) = 0.

2. f(x) = |z| sur[—1,1]
— f est continue sur [—1,1], f(—=1) = f(1) =1
— Mais f n’est pas dérivable en 0

— Le théoréme ne s’applique pas.

Théoréme 5.5.2. (Théoréme des accroissements finis). Soit f une fonction telle que :
(i) f est continue sur [a,b]

(ii) f est dérivable sur la,b|
Alors il eziste au moins un point ¢ €|a, b| tel que :
f(b) — f(a)
/ —_
f (C) - b_ a

Démonstration. On va démontrer ce théoréme en s’appuyant sur le théoreme de Rolle.
Considérons la fonction auxiliaire g définie sur [a, b] par :

b—a
Vérifions que ¢ satisfait les hypotheses du théoreme de Rolle :
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1. Continuité : g est continue sur [a, b] car f est continue sur [a, b].

2. Dérivabilité : g est dérivable sur |a, b[ car f est dérivable sur |a,b| et la fonction
affine est dérivable.

3. Valeurs aux bornes :

_J) = f(a)

— (a—a)=0

g(b) = F(b) = fla) = == — "= (b—a) = F(b) = f(a) = (f(b) = f(a) =0
Donc g(a) = g(b) = 0.

Par le théoreme de Rolle, il existe ¢ €]a, b[ tel que ¢'(¢) = 0.
Calculons la dérivée de g :

g = ) - =@
Puisque ¢'(¢) =0, on a : )
RRS(UE (CI
D’ou : )
o= 1010

]

e Interprétation géométrique : Il existe un point ¢ ou la tangente est parallele au
segment joignant (a, f(a)) a (b, f(b)).

Y

Exemple. Montrer que |sinb — sina| < |b — al, pour tous réels a et b.
On considére la fonction f(x) = sinx.
La fonction f(x) =sinz est :

— Continue sur R (donc sur tout intervalle |a, b))
— Dérivable sur R (donc sur tout intervalle |a, b[)

— Sa dérivée est f'(x) = cosx
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Les hypothéses du théoréme des accroissements finis (TAF) sont donc satisfaites
sur tout intervalle [a,b] (avec a < b).
D’aprés le TAF, il existe ¢ €]a, b| tel que :

f(b) B f(a’) _ f/(C>
b—a
Soit : ) )
sinb —sina
ﬁ — COS C.
En prenant la valeur absolue des deux membres :
sinb — sina
. = | cos ¢|
Or, pour tout c € R, on a :
|cose| <1

Donc :
sinb — sina

b—a

En multipliant les deux membres par |b — a| (qui est positif) :

|sinb —sina| < |b—al.

Corollaire 5.5.3. Soit f : [a,b] — R une fonction continue sur [a,b] et dérivable sur
la, b

1. SiVzx €la,b], f'(x)>0<= f est croissante sur [a,b].

2. SiVx €la,b], ['(z) <0< f est décroissante sur |a,b].

3. SiVz €la,b], ['(x)=0<«<= f est constante sur [a,b].

4. SiVx €la,bl, f'(z) >0, alors [ est strictement croissante sur |a,b.
5. SiVx €la, b, f'(x) <0, alors f est strictement décroissante sur [a,b].

Démonstration.
1. =) : Soient z1,z5 € [a,b] avec x1 < xo. D’apres le théoreme des accroissements
finis appliqué a f sur [z, x9], il existe ¢ €]xq, o[ tel que :

f(@2) = f@1) = f(e) (w2 — 21)
Comme f'(¢) > 0 et 23 — a1 > 0, 0n a f(z2) — f(x1) >0, donc f est croissante.

<) : Réciproquement, supposons que [ est croissante. Fixons z €|a, b[. Pour tout
y > x nous avons y —x > 0 et f(y) — f(z) > 0, ainsi le taux d’accroissement vérifie

fly) — f(z) >0.

y—x
A la limite, quand y — x, ce taux d’accroissement tend vers la dérivée de f en z et donc
f(2) >0,

Les autres cas se démontrent de maniere similaire. O

15



Remarque. La réciproque de (4) et (5) n’est pas toujours vraie. Par exemple, la fonction
f(x) = a® est strictement croissante sur R mais sa dérivée f'(0) = 0.

Corollaire 5.5.4. (Reégle de L’Hopital pour la forme indéterminée 8) Soit I un intervalle
ouvert contenant a € R. Soient f et g deux fonctions définies sur I\ {a} telles que :

1. alcl_I)I(llf($) =0 et ilgclbg(:v) =0

2. f et g sont dérivables sur I\ {a}

3. g'(x) #0 sur I\ {a}.
f'(z)

i =/louleRU —00}.
4. lim 7o) ou l € {400, —o0}
Alors :
lim /() = lim f/(f) =/.
T—ra g(/]/’) T—a g (flj)
Remarques.

1. Extension aux autres formes indéterminées :
e Forme Z : Un corollaire similaire existe lorsque lim f(z) = o0 et lim g(x) =
+o0.
o Le résultat vaut pour x — a* et x — a~
e Limites infinies : Le résultat s’étend aux cas x — +00 et x — —00

f'(x) 0

2. Si le quotient e présente a son tour une forme indéterminée 5 ou 2, et si les hy-

pothéses sont verifiées pour les dérivées successives, on peut appliquer itérativement

la regle :
/ "
fl) ) ()
lim ——= = lim = lim =
T—ra g(w) Tr—a g’(a’;) T—ra g”(a’;)
Exemples.
1. lim 2% = Jim 5% = ]
250 T z—0
2. lin% =1 — lim, % =1.
z—
2. lim sinz—x __ lim cosz—1 __ lim —sinz __ lim =cosz — _l.
220 g3 z—0 97 z—0 L 50 O 6
4. lim 2z = lim X —.
z—+oo T z5+o00 1
5. Pour tout entier n >1 :
et . e’ . e’ et
hm — = hm —_— = hm — Y — = hm — =400
x—+oo T z—+oo pn—1 T—+00 n(n — 1)x”*2 z—+oo n
6. Calculons lim (m — Va2 — )
T—r—+00

On a pour x >0 :

m_m:x<1_m):w.

Posons t = %, alors quand x — +oo, t — 01 :

lim (x— Va2 —x) = lim 1_t1_t

T—>+00 t—0+

16



Cette limite est une forme indéterminée %. Appliquons la régle de I’Hopital :

Cl=yT=t . g 1
lim ——— = lim = —.
t—0+ t t—0t 1 2

[\

Donc : !
lim (a:— a:Q—x) =35

T—>+00

5.6 Formules de Taylor

Soit I C R un intervalle ouvert.
Définition 5.6.1. (Fonctions de classe C™)
Pour n € N*, on dit que f : I — R est une fonction de classe C" si :
i) [ estn fois dérivable sur I
ii) fM est continue sur I.

On dit que f est de classe C° si f est continue sur I.
On dit que f est de classe C* si f est de classe C"™ pour tout n € N.

Théoréme 5.6.2. (Formule de Taylor-Lagrange).

Soit f: I — R une fonction de classe C"™' (n € N) et soit a,z € I. Il existe un réel c
entre a et x tel que :

o) = 1@+ P @) =0+ T 0t L gy LI e

Z:: LA (x —a)f + Jm(aj —a)"th (5.1)

— Lasomme zn: f(:'(a) (z—a)¥ représente le polynome de Taylor de degré n noté T), ()

de f au pokilzlg a. Ce polynéme approxime localement la fonction f au voisinage de
e

— Le terme m(m —a)"*! appelé reste de Lagrange quantifie I'erreur d’approxi-
n !
mation commise lorsqu’on remplace f(x) par son polynéme de Taylor.

— Interprétation : La formule montre que toute fonction suffisamment réguliere peut

étre localement approchée par un polynome, avec une erreur contrélée par la dérivée
d’ordre supérieur.

Exemple. Formule de Taylor-Lagrange pour la fonction exponentielle a l’ordre n :
La fonction x — f(z) = €* est de classe C"™' sur I = R pour tout n € N. Fizons

a € R. Comme f'(z) =e*, f"(x) =€, ..., f®)(x) = e® pour tout k € N, alors pour tout
x € R, il existe c entre a et x tel que :

ex:€a+ea.(l-_a)+i



En particulier, si l'on se place en a = 0, on retrouve le développement de la fonction
exponentielle en x =0 :

2 1,3 "

X
T _q B T T S
R T TRy B T

Sia =1, la formule de Taylor-Lagrange a l’ordre n s’écrit

c

"t (5.2)

(n+1)!

Dans la plupart des cas on ne connailtra pas la valeur de c¢. Cependant, il est possible
d’encadrer la différence entre la fonction et son polynéome de Taylor T,,. Ceci s’exprime
par le corollaire suivant :

e“:e+e(x—1)+§(x—1)2+§(:c—1)3+~--+£(;1:—1)”+ (x — )"

n!

Corollaire 5.6.3. Si en plus la fonction | f™*V| est majorée sur I par un réel M, alors
pour tout a,x € I, on a :

|z — a|"™!
T, <M———.
@) = Tufe)] < MEE
Démonstration. Immédiate a partir de la formule de Taylor-Lagrange (|5.1)). [

Exemple. Approzimation de exp(0,01).
Soit f(x) = exp(x) =: €. La formule de Taylor (5.2) en a =0 a l'ordre 3 devient :
x? 23 fW(c)at
f@) =141 a+1- 5415+ o

c

c’est-a-dire f(z) =1+ x + %2 + %3 + 6224 , pour un certain c entre 0 et x.
Appliquons ceci pour x = 0,01. Le reste étant petit on trouve alors :

0,01)? 0,01)3

0,00 (0,01)
2 6

exp(0,01) ~ 1+ 0,01 + = 1,01005016666...

On peut méme savoir quelle est la précision de cette approzimation : comme f*(x) =
e® alors pour c € [0,0,01], on a |f®(c)| < e®' < 2. Donc :

xr
<2,
Y

f(z) — <1+x+x;+$63>

Pour x = 0,01 cela donne :

2 3 4
(0,00*  (0.00%)| _ (0,01)"
2 6 12

exp(0,01) — (1 +0,01 +

Comme =5 < 1072, alors notre approximation donne au moins 8 chiffres exacts aprés

la virgule.

(0,01)*
2

Théoréme 5.6.4. (Formule de Taylor-Young). Soit f : I — R une fonction de classe C"
et soit a € I. Alors pour tout x € I on a :

(@) = fa) + Fla)e —a) + 10

ot € est une fonction définie sur I telle que e(x) — 0.

(x—a)*+--+
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Notation. Le terme (v — a)"c(x) oi lim e(z) = 0 appelé reste de Young est souvent
abrégé en « petit o » (le symbol de Landau) de (x — a)™ et est noté o((x — a)").
Ainsi, o((x — a)™) désigne une fonction telle que :

ollz—a)y)
;t—m (Q; — a)" 0.

Remarque. Lorsque le point de développement est a = 0, la formule de Taylor prend le
nom de Formule de Maclaurin.

Pour une fonction [ de classe C", la formule de Maclaurin-Young a ['ordre n s’écrit :

f(@)=f(0)+ f(0)z+ f10) 2 + f”’(O)x3 4+ o4 f(n)(o)

o v 3] n!

" 4+ x"e(x)

avec lim e(x) = 0.
z—0

Exemples.

1. Ecrire la formule de Maclaurin-Young des fonctions sin et cos .

Dérivées successives de sin(z) :

f(z) = sin(z) = sin (x L0 ;T) £0) =0
f/(z) = cos(z) = sin (x ey g) 70y =1
f"(z) = —sin(z) = sin (g; L. g) 10y = 0

F®)(2) = — cos(z) = sin (:p +3. g) FO(0) = —1
f () = sin(a) = sin (2 +4- ) F9(0) = 0

Dérivées successives de cos(x) :

g(z) = cos(z) = cos (x iy g) 4(0) =1
§'(z) = —sin(x) = cos (x Y. g) J(0) =0
(@) = = cos(w) = cos (2 +2- 7 ) §'(0) = -1

9¥(x) = sin(z) = cos (x +3. ;T) 49(0) = 0
g™ (z) = cos(z) = cos (x 4. 7;) 49(0) = 1

On démontre par récurrence sur n que les dérivées n-iéme de sin et cos s’écrivent :

sin™(z) = sin <x + n;T) . cos™(z) = cos (m + n;r>
Formule de Maclaurin-Young a [’ordre n
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Pour sin(x) a Uordre n =2p+1 :

sin(z) =z —

3 5 7

X

T T

31 57!

(_

1)p 2p+1 2p+1
WZE +x 5(.17)

Pour cos(x) a Uordre n = 2p :

2 ot

cos(.r)zl—j—l—ﬁ—

$6

6!

+

(=1)
(2p)!

%P 4+ JEQPE(QZ)

avec lim e(z) = 0.
z—0

Formule de Maclaurin-Young de sin a l'ordre 5 :

3 5

3

5

sin(z) =z — %—l—%—l—xf’s(x) =x— %—irlx—zo—l—x%(x)
Formule de Maclaurin-Young de cos a l’ordre 4 :
e 2 2t
cos(x)zl—a%—ﬂ—l—x 5(x):1—?+ﬂ+x e(x)

avec lir% e(z) = 0 dans les deuz cas.
z—

. Formule de Maclaurin-Young de /1 + x2 a l'ordre 5 :

fO () =

(@) = -

1222 — 3

(1+22)7/2
602 — 45x
(1 + 22)9/

T+ a2

2

En utilisant les valeurs calculées ci-dessus :

f(0)=1
f0)=0
f1(0) =1
f@0)=0
f@0)=-3
fO0)=0
FD0) 4 f9(0)
T 5!

(0 @) (0
\/1+x2=f(0)+f'(0)x+f2(' )x2+f 3'< ):(;3
1 —
:1+0-x—|—2x2—|—0-x3—|—2jx4+0~x5—|—x55(a:)
2 4
:1+%—%—|—x55($)
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ou lime(x) = 0.

z—0
Ou encore
2?7t
\/1+x2:1+5—§+0(x5).
3. Calculer la limite suivante en utilisant la formule de Maclaurin-Young a un ordre
convenable
. ef—=1—x
lim ——
x—0 1’2

Formule de Maclaurin-Young pour €* a l’ordre 2 :

2

xr __ :L; 2
ef=1+x+ 5 + ze(z), s(x)m()

Substitution :

PR (1+x—|—§+x2s(x))—1—m %24—1;25(@ 1
72 - 72 - 2 :§+€(x)

Par passage a la limite :

et —-1—=x 1
lim = —
rz—0 :L‘2 2

5.7 Convexité d’une courbe

Définition 5.7.1. (Critére géométrique).

— Une fonction est convexe sur un intervalle si sa courbe est située au-dessus de toutes
ses tangentes sur cet intervalle.

— Une fonction est concave sur un intervalle si sa courbe est située au-dessous de
toutes ses tangentes.

— Les deux notions se caractériseent aussi de la maniere suivante : une fonction est
convexe si le segment entre deux points de sa courbe est au-dessus de la courbe, et
concave si le segment est en dessous.

Proposition 5.7.1. (Critére analytique).

f(x) >0 sur I = f est convexe sur [
f"(z) <0 sur I = f est concave sur I
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2 Fonction convexe
pour = > 0
1 e
: T
1 2
_]_ 1

Fonction concave
pour z < 0

5.8 Point d’inflexion

Définition 5.8.1. Si f est deux fois dérivable sur I : xq est point d’inflexion si f” change
de signe en xo. Autrement dit, un point d’inflexion est un point ou la courbe change de
convezité (de convere d concave ou inversement).

e En un point d’inflexion zg, la courbe traverse sa tangente.

e La tangente en un point d’inflexion est appelée tangente d’inflexion.

3 1
2 Fo.
“Point d’inﬂexior,l/\v
1 1
“~~angente
pa \ pa T~ X
CUOIICave ' CUOIIVEXCE

Exemple. Soit f(z) = —22° + 622
Ona f'(z) = =622 + 12z, f"(z) = =120 +12,Vz € R.
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Signe de " :
f"(x) >0 pour z <1 (conveze)
f"(z) =0 pour z =1
f"(z) <0 pour z >1 (concave)
D’ou
f est conveze sur | — 0o, 1] et concave sur [1,4o00].

La courbe représentative admet donc un point d’inflexion en A(1;4).

f(z)

Tangente:,j =6(z—1)

f(z) = =223 + 622

Point d’inflexion

5.9 Asymptote d’une courbe

Définition 5.9.1. Une asymptote est une droite dont la courbe se rapproche indéfiniment
sans jamais (ou rarement) la toucher.

e Types d’asymptotes :

Asymptote verticale : x = a : se produit quand limi f(z) =+
Tr—a

Asymptote horizontale : y = ¢ : se produit quand 1_1>rin flz)=1¢
Asymptote oblique : y = ax + b : se produit quand lim [f(z) = (az+ )] =0
e Construction du graphe d’une fonction

1. Domaines d’étude

— Domaine de définition

— Parité, périodicité (réduction du domaine)
2. Limites et asymptotes

— Aux bornes du domaine
— Recherche d’asymptotes

3. Dérivée premiere
— Calcul de f'(z)
— Signe de f'(x) et tableau de variations
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— Extremums locaux
4. Dérivée seconde
— Calcul de f"(x)

— Signe de f”(x) et tableau de convexité

— Points d’inflexion
5. Points particuliers

— Intersections avec les axes

— Valeurs remarquables

6. Tracé de la courbe

(a) Placer les asymptotes (en pointillés)

(b) Marquer les points particuliers

)
()
)

(d) Vérifier la cohérence avec les limites

2
Exemple. Pour f(z) = * |
x _
r=1
141 1)
12 |
10 ¢

8 i
GI\i[inimun]:l
4 1

2

Tracer selon les variations et convexités

Convexe
() > 0
J1, +oof

A_sympt‘dté—verticale

|
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Caractéristiques:

e Domaine de définition : R\ {1}

e Asymptotes : = 1 (verticale), y
x + 1 (oblique)

, x(x —2)
o fi(z) = W
o f'(z) = m
e Variations : ' sur | — 0o, 0], \, sur
[0,1[, N\ sur ]1,2], 7 sur [2,+o0]
e Concave sur | — 00, 1], convexe sur
11, +o0]

e Pas de point d’inflexion
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