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Chapitre 5

Fonctions dérivables

5.1 Notion de dérivée
Soit f une fonction définie sur un intervalle ouvert I et soit x0 ∈ I.

Définition 5.1.1.

• La fonction f est dérivable en x0 si le taux d’accroissement f(x) − f(x0)
x− x0

admet une
limite finie lorsque x tend vers x0.
Cette limite s’appelle alors le nombre dérivé de f en x0 et est noté f ′(x0). Ainsi :

f ′(x0) = lim
x→x0

f(x) − f(x0)
x− x0

• La fonction f est dérivable sur l’intervalle ouvert I si elle est dérivable en tout point
x0 de I.
Dans ce cas, la fonction qui à tout x ∈ I associe le nombre dérivé f ′(x) est appelée
fonction dérivée de f sur I, notée f ′ ou df

dx
.

Remarque. En posant h = x− x0, on obtient la formulation équivalente :

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

.

Exemples.
1. Soit f(x) = 2x2 − 3x+ 1. Montrons que f est dérivable sur R.

Pour tout x0 ∈ R, calculons le taux d’accroissement :

f(x) − f(x0)
x− x0

= (2x2 − 3x+ 1) − (2x2
0 − 3x0 + 1)

x− x0

= 2(x2 − x2
0) − 3(x− x0)
x− x0

= 2(x− x0)(x+ x0) − 3(x− x0)
x− x0

= 2(x+ x0) − 3
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Quand x → x0, on obtient :

f ′(x0) = lim
x→x0

[2(x+ x0) − 3] = 2(2x0) − 3 = 4x0 − 3

Donc f est dérivable sur R et f ′(x) = 4x− 3.
2. Soit f(x) = cos x. Montrons que f est dérivable sur R.

Pour tout x0 ∈ R, calculons le taux d’accroissement :

f(x) − f(x0)
x− x0

= cosx− cosx0

x− x0

En utilisant l’identité trigonométrique cos p − cos q = −2 sin
(

p+q
2

)
sin

(
p−q

2

)
, on

obtient :

cosx− cosx0

x− x0
=

−2 sin
(

x+x0
2

)
sin

(
x−x0

2

)
x− x0

= − sin
(
x+ x0

2

)
·

sin
(

x−x0
2

)
x−x0

2

Quand x → x0, on a :
sin

(
x+x0

2

)
→ sin x0

sin(x−x0
2 )

x−x0
2

→ 1 (limite fondamentale)
Donc :

f ′(x0) = lim
x→x0

− sin
(
x+ x0

2

)
·

sin
(

x−x0
2

)
x−x0

2

 = − sin x0 · 1 = − sin x0

Ainsi, f est dérivable sur R et f ′(x) = − sin x.

• Interprétation géométrique de la dérivée

La dérivée d’une fonction en un point possède une interprétation géométrique fonda-
mentale. Soit f une fonction dérivable en x0 et soit Cf sa courbe représentative.

x

y

x0

f(x0)

x

f(x)

x− x0

f(x) − f(x0)

A

M
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• Explication du schéma :

— Point fixe A : A(x0, f(x0)) est le point où l’on étudie la dérivée
— Point mobile M : M(x, f(x)) est un point variable sur la courbe
— Droite tangente : Lorsque x → x0, le point M se rapproche de A et la droite (AM)

tend vers la tangente à la courbe en A
— Equation de la tangente : Si f est dérivable en x0, l’équation de la tangente à Cf

au point A(x0, f(x0)) est :

y = f ′(x0)(x− x0) + f(x0)

Cette équation montre que :
— Le coefficient directeur de la tangente à la courbe au point d’abscisse x0 est

f ′(x0)
— La tangente passe par le point (x0, f(x0)).

Proposition 5.1.1. (Caractérisation de la dérivabilité). La fonction f est dérivable en
x0 si et seulement s’il existe ℓ ∈ R (qui sera f ′(x0)) et une fonction ε : I → R telle que :

• ε(x) −−−→
x→x0

0.

• f(x) = f(x0) + ℓ(x− x0) + (x− x0)ε(x).

Démonstration. (⇒) : Supposons f dérivable en x0. Alors par définition :

f ′(x0) = lim
x→x0

f(x) − f(x0)
x− x0

Posons ℓ = f ′(x0) et définissons la fonction ε par :

ε(x) = f(x) − f(x0)
x− x0

− ℓ pour x ̸= x0, et ε(x0) = 0

Alors on a bien :
f(x) = f(x0) + ℓ(x− x0) + (x− x0)ε(x)

et par construction :

lim
x→x0

ε(x) = lim
x→x0

(
f(x) − f(x0)

x− x0
− ℓ

)
= f ′(x0) − ℓ = 0

(⇐) : Supposons qu’il existe ℓ ∈ R et ε avec ε(x) → 0 telle que :

f(x) = f(x0) + ℓ(x− x0) + (x− x0)ε(x)

Alors pour x ̸= x0 :
f(x) − f(x0)

x− x0
= ℓ+ ε(x)

et donc :
lim

x→x0

f(x) − f(x0)
x− x0

= ℓ+ lim
x→x0

ε(x) = ℓ

Ce qui prouve que f est dérivable en x0 et que f ′(x0) = ℓ.
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Définition 5.1.2.
— La dérivée à droite de f en x0 est définie par :

f ′
d(x0) = lim

x→x+
0

f(x) − f(x0)
x− x0

si cette limite existe et est finie.
— La dérivée à gauche de f en x0 est définie par :

f ′
g(x0) = lim

x→x−
0

f(x) − f(x0)
x− x0

si cette limite existe et est finie.

Proposition 5.1.2. Une fonction f est dérivable en x0 si et seulement si :
• f admet une dérivée à gauche et une dérivée à droite en x0 et
• f ′

g(x0) = f ′
d(x0)

Dans ce cas, f ′(x0) = f ′
g(x0) = f ′

d(x0).

Proposition 5.1.3.
i) Si f est dérivable en x0 alors f est continue en x0.
ii) Si f est dérivable sur I alors f est continue sur I.

Démonstration.
i) Supposons que f est dérivable en x0. Alors par définition :

lim
x→x0

f(x) − f(x0)
x− x0

= f ′(x0)

Considérons la différence f(x) − f(x0) que nous pouvons réécrire comme :

f(x) − f(x0) = f(x) − f(x0)
x− x0

· (x− x0)

Lorsque x → x0, on a :
f(x) − f(x0)

x− x0
→ f ′(x0) (par dérivabilité)

x− x0 → 0
Donc par produit des limites :

lim
x→x0

[f(x) − f(x0)] = f ′(x0) · 0 = 0

Ce qui équivaut à :
lim

x→x0
f(x) = f(x0)

Ainsi, f est continue en x0.
ii) Si f est dérivable sur I, alors f est dérivable en tout point x0 ∈ I. D’après le

premier point, f est donc continue en tout point x0 ∈ I, ce qui signifie que f est continue
sur I.
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Remarque. La réciproque est fausse : une fonction peut être continue en un point sans
être dérivable en ce point. Par exemple, la fonction valeur absolue f(x) = |x| est continue
en 0 mais n’est pas dérivable en 0. En effet, étudions la dérivabilité en 0 en calculant la
limite du taux d’accroissement :

lim
x→0

f(x) − f(0)
x− 0 = lim

x→0

|x|
x

Calculons les limites à gauche et à droite :

— Limite à droite : Pour x > 0, |x| = x, donc :

lim
x→0+

|x|
x

= lim
x→0+

x

x
= 1

— Limite à gauche : Pour x < 0, |x| = −x, donc :

lim
x→0−

|x|
x

= lim
x→0−

−x
x

= −1

Les limites à gauche et à droite sont différentes :

lim
x→0−

|x|
x

= −1 ̸= 1 = lim
x→0+

|x|
x

Donc la limite limx→0
|x|
x

n’existe pas.
Ainsi, f n’est pas dérivable en 0.

x

y

(0, 0)

y = |x|
pente = 1pente = -1

La fonction valeur absolue présente un point anguleux en 0 :
— À droite de 0, la courbe a une pente de +1
— À gauche de 0, la courbe a une pente de −1
— Il n’y a pas de tangente unique en 0

5.2 Opérations sur les fonctions dérivables
Proposition 5.2.1. Soient f et g deux fonctions dérivables en x0 et λ, µ ∈ R.

1. Combinaison linéaire : (λf + µg)′(x0) = λf ′(x0) + µg′(x0)
2. Produit : (fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0)

3. Inverse : Si f(x0) ̸= 0, alors
(

1
f

)′

(x0) = − f ′(x0)(
f(x0)

)2
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4. Quotient : Si g(x0) ̸= 0, alors
(
f

g

)′

(x0) = f ′(x0)g(x0) − f(x0)g′(x0)(
g(x0)

)2

Démonstration.
1. Combinaison linéaire :

(λf + µg)′(x0) = lim
x→x0

(λf + µg)(x) − (λf + µg)(x0)
x− x0

= lim
x→x0

(
λ
f(x) − f(x0)

x− x0
+ µ

g(x) − g(x0)
x− x0

)
= λf ′(x0) + µg′(x0)

2. Produit :

(fg)′(x0) = lim
x→x0

f(x)g(x) − f(x0)g(x0)
x− x0

= lim
x→x0

(
f(x)g(x) − f(x0)g(x) + f(x0)g(x) − f(x0)g(x0)

x− x0

)

= lim
x→x0

(
g(x)f(x) − f(x0)

x− x0
+ f(x0)

g(x) − g(x0)
x− x0

)
= g(x0)f ′(x0) + f(x0)g′(x0)

car g est continue en x0 (dérivable implique continu).
3. Inverse (

1
f

)′

(x0) = lim
x→x0

1
f(x) − 1

f(x0)

x− x0

= lim
x→x0

f(x0) − f(x)
(x− x0)f(x)f(x0)

= − lim
x→x0

1
f(x)f(x0)

· f(x) − f(x0)
x− x0

= − f ′(x0)(
f(x0)

)2

car f est continue en x0 et f(x0) ̸= 0.

4. Quotient : en écrivant f
g

= f · 1
g

et en utilisant les règles du produit et de l’inverse :

(
f

g

)′

(x0) = f ′(x0) · 1
g(x0)

+ f(x0) ·

− g′(x0)(
g(x0)

)2


= f ′(x0)g(x0) − f(x0)g′(x0)(

g(x0)
)2

Exemples.
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1. Dérivée de f(x) = 3x2 − 2x+ 5

f ′(x) = 3(2x) − 2(1) + 0 = 6x− 2

2. Dérivée de f(x) = x sin x

f ′(x) = 1 · sin x+ x · cosx = sin x+ x cosx

3. Dérivée de f(x) = x

x2 + 1

f ′(x) = 1 · (x2 + 1) − x · (2x)
(x2 + 1)2 = x2 + 1 − 2x2

(x2 + 1)2 = 1 − x2

(x2 + 1)2 .

Proposition 5.2.2. (Dérivée d’une fonction composée). Soient f : I → J et g : J → R
deux fonctions telles que :

— f est dérivable en x0 ∈ I

— g est dérivable en f(x0) ∈ J

Alors g ◦ f est dérivable en x0 et :

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0).

Démonstration. Soient f dérivable en x0 et g dérivable en f(x0). On a :

g(f(x)) − g(f(x0))
x− x0

= g(f(x)) − g(f(x0))
f(x) − f(x0)

· f(x) − f(x0)
x− x0

Quand x → x0, on a f(x) → f(x0) par continuité de f en x0. Donc :

lim
x→x0

g(f(x)) − g(f(x0))
f(x) − f(x0)

= g′(f(x0))

et
lim

x→x0

f(x) − f(x0)
x− x0

= f ′(x0)

Par produit des limites, on obtient :

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0)

Exemples.
1. Soit ψ(x) = cos

(
ex2 · ln(2x+ 1)

)
Cette fonction est dérivable sur ] − 1

2 ,+∞[ car :
— u(x) = ex2 est dérivable sur R
— v(x) = ln(2x+ 1) est dérivable sur ] − 1

2 ,+∞[
— w(t) = cos(t) est dérivable sur R

Par la Proposition 5.2.2 :

ψ′(x) = − sin
(
ex2 · ln(2x+ 1)

)
· d

dx

[
ex2 · ln(2x+ 1)

]
= − sin

(
ex2 · ln(2x+ 1)

)
·
(

2xex2 ln(2x+ 1) + 2ex2

2x+ 1

)
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2. Soit h(x) = esin(x2+3x). Cette fonction est la composée de trois fonctions dérivables
sur leur domaine de définition :

— f(x) = x2 + 3x est dérivable sur R
— g(u) = sin(u) est dérivable sur R
— k(v) = ev est dérivable sur R

Par la Proposition 5.2.2, h = k ◦ g ◦ f est dérivable et :

h′(x) = (2x+ 3) · cos(x2 + 3x) · esin(x2+3x).

Corollaire 5.2.1. Soit f : I → J une fonction bijective et dérivable en x0 ∈ I telle que
f ′(x0) ̸= 0. Alors sa fonction réciproque f−1 : J → I est dérivable en y0 = f(x0) et :

(f−1)′(y0) = 1
f ′(x0)

= 1
f ′(f−1(y0))

Démonstration. On a f−1 ◦ f = idI . En dérivant cette composition en x0 :

(f−1 ◦ f)′(x0) = (f−1)′(f(x0)) · f ′(x0) = 1

Donc :
(f−1)′(y0) = 1

f ′(x0)
= 1
f ′(f−1(y0))

.

Exemple. Soit f(x) = x3 + 2, qui est bijective sur R car continue et strictement crois-
sante.

Sa fonction réciproque est f−1(y) = 3
√
y − 2.

La dérivée de f est f ′(x) = 3x2.
Par le Corollaire 5.2.1, pour tout y dans l’image de f :

(f−1)′(y) = 1
f ′(f−1(y)) = 1

3
(
f−1(y)

)2 = 1
3( 3

√
y − 2)2 = 1

3 3
√

(y − 2)2
.

5.3 Dérivées successives
Soit f : I → R une fonction dérivable et soit f ′ sa dérivée. Si la fonction f ′ : I → R

est aussi dérivable on note f ′′ = (f ′)′ la dérivée seconde de f .
Plus généralement on note :

f (0) = f, f (1) = f ′, f (2) = f ′′, et (f (n−1))′ = f (n)

Si la dérivée n-ième f (n) existe on dit que f est n fois dérivable.

Théorème 5.3.1. (Formule de Leibniz). Si f et g sont n fois dérivables en x0 ∈ I, alors

(f · g)(n)(x0) =
n∑

k=0

(
n

k

)
f (n−k)(x0) · g(k)(x0).

Rappelons que le coefficient binomial est défini par :(
n

k

)
= n!
k!(n− k)!
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Démonstration. La preuve de la formule de Leibniz se fait par récurrence sur n en utilisant
la relation de Pascal : (

n+ 1
k

)
=
(

n

k − 1

)
+
(
n

k

)
, 1 ≤ k ≤ n.

Exemple. Calculer la dérivée n-ième de f(x) = ln(x) · x3.
On pose :

u(x) = ln(x) et v(x) = x3

Calculons explicitement les dérivées successives de u :

u(x) = ln(x)

u′(x) = 1
x

= x−1

u′′(x) = −x−2

u(3)(x) = 2x−3

u(4)(x) = −2 · 3x−4

Par récurrence, on montre que pour k ≥ 1 :

u(k)(x) = (−1)k−1(k − 1)!x−k

Pour v(x) = x3, on a :

v(0)(x) = x3

v(1)(x) = 3x2

v(2)(x) = 6x
v(3)(x) = 6
v(k)(x) = 0 pour k ≥ 4

Par la formule de Leibniz :

f (n)(x) =
n∑

k=0

(
n

k

)
u(n−k)(x)v(k)(x)

Comme v(k)(x) = 0 pour k ≥ 4, seuls les termes k = 0, 1, 2, 3 contribuent :

f (n)(x) =
(
n

0

)
u(n)(x)v(0)(x) +

(
n

1

)
u(n−1)(x)v(1)(x)

+
(
n

2

)
u(n−2)(x)v(2)(x) +

(
n

3

)
u(n−3)(x)v(3)(x)

En substituant les expressions :
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f (n)(x) =
(
n

0

)
(−1)n−1(n− 1)!x−n · x3

+
(
n

1

)
(−1)n−2(n− 2)!x−(n−1) · 3x2

+
(
n

2

)
(−1)n−3(n− 3)!x−(n−2) · 6x

+
(
n

3

)
(−1)n−4(n− 4)!x−(n−3) · 6

En simplifiant les puissances de x :

f (n)(x) =(−1)n−1(n− 1)!x3−n

+ 3n(−1)n−2(n− 2)!x3−n

+ 3n(n− 1)(−1)n−3(n− 3)!x3−n

+ n(n− 1)(n− 2)(−1)n−4(n− 4)!x3−n

Finalement, pour n ≥ 4 :

f (n)(x) = x3−n
(
(−1)n−1(n− 1)! + 3n(−1)n−2(n− 2)!

+3n(n− 1)(−1)n−3(n− 3)! + n(n− 1)(n− 2)(−1)n−4(n− 4)!
)

5.4 Extremums
Définition 5.4.1. (Point critique et extremum local). Soit f : I → R une fonction définie
sur un intervalle I ⊆ R, et soit x0 ∈ I.

1. On dit que x0 est un point critique de f si f ′(x0) = 0.
2. On dit que f admet un maximum local en x0 s’il existe un intervalle ouvert J

contenant x0 tel que :
∀x ∈ I ∩ J, f(x) ≤ f(x0)

3. On dit que f admet un minimum local en x0 s’il existe un intervalle ouvert J conte-
nant x0 tel que :

∀x ∈ I ∩ J, f(x) ≥ f(x0)

4. On dit que f admet un extremum local en x0 si f admet un maximum local ou un
minimum local en ce point.

Définition 5.4.2. (Extremum global). Soit f : I → R une fonction définie sur un inter-
valle I ⊂ R, et soit x0 ∈ I.

1. On dit que f admet un maximum global (ou absolu) en x0 si :

∀x ∈ I, f(x) ≤ f(x0)

2. On dit que f admet un minimum global (ou absolu) en x0 si :

∀x ∈ I, f(x) ≥ f(x0)
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3. On dit que f admet un extremum global en x0 si f admet un maximum global ou un
minimum global en ce point.

−1 1 2 3 4 5

−2

2

4
f(x) = sin(2x) + 0.5x

maximum global

maximum local

x

f(x)

Théorème 5.4.3. (Théorème de Fermat). Soit f : I → R une fonction définie sur un
intervalle ouvert I ⊆ R, et soit x0 ∈ I.

Si f est dérivable en x0 et admet un extremum local en x0, alors :

f ′(x0) = 0.

Démonstration. Supposons que f admette un maximum local en x0. Il existe donc α > 0
tel que pour tout h avec |h| < α, on ait f(x0 + h) ≤ f(x0).

Pour h > 0, on a :
f(x0 + h) − f(x0)

h
≤ 0

En passant à la limite quand h → 0+, on obtient f ′(x0) ≤ 0.
Pour h < 0, on a :

f(x0 + h) − f(x0)
h

≥ 0 (car le numérateur est ≤ 0 et le dénominateur < 0)

En passant à la limite quand h → 0−, on obtient f ′(x0) ≥ 0.
On conclut que f ′(x0) = 0.
Le cas d’un minimum local se démontre de manière analogue.

−2 −1 1 2 3 4

−2

2

4

f(x) = −x2 + 3

Tangente horizontale: f ′(0) = 0
Maximum local

x
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5.5 Théorème de Rolle et Théorème des Accroisse-
ments Finis

Théorème 5.5.1. (Théorème de Rolle) Soit f une fonction telle que :
(i) f est continue sur [a, b]

(ii) f est dérivable sur ]a, b[
(iii) f(a) = f(b)
Alors il existe au moins un point c ∈]a, b[ tel que : f ′(c) = 0.

• Interprétation géométrique

x

f(x)

(a, f(a)) (b, f(b))

(c, f(c))

a bc

Tangente horizontale f ′(c) = 0

Exemples.
1. Soit f(x) = x2 − 4x+ 3 sur [1, 3].

— f continue et dérivable sur R
— f(1) = 1 − 4 + 3 = 0, f(3) = 9 − 12 + 3 = 0
— f ′(x) = 2x− 4 = 0 ⇒ x = 2 ∈]1, 3[

Le point c = 2 vérifie f ′(2) = 0.
2. f(x) = |x| sur [−1, 1]

— f est continue sur [−1, 1], f(−1) = f(1) = 1
— Mais f n’est pas dérivable en 0
— Le théorème ne s’applique pas.

Théorème 5.5.2. (Théorème des accroissements finis). Soit f une fonction telle que :
(i) f est continue sur [a, b]

(ii) f est dérivable sur ]a, b[
Alors il existe au moins un point c ∈]a, b[ tel que :

f ′(c) = f(b) − f(a)
b− a

Démonstration. On va démontrer ce théorème en s’appuyant sur le théorème de Rolle.
Considérons la fonction auxiliaire g définie sur [a, b] par :

g(x) = f(x) − f(a) − f(b) − f(a)
b− a

(x− a)

Vérifions que g satisfait les hypothèses du théorème de Rolle :
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1. Continuité : g est continue sur [a, b] car f est continue sur [a, b].
2. Dérivabilité : g est dérivable sur ]a, b[ car f est dérivable sur ]a, b[ et la fonction

affine est dérivable.
3. Valeurs aux bornes :

g(a) = f(a) − f(a) − f(b) − f(a)
b− a

(a− a) = 0

g(b) = f(b) − f(a) − f(b) − f(a)
b− a

(b− a) = f(b) − f(a) − (f(b) − f(a)) = 0

Donc g(a) = g(b) = 0.
Par le théorème de Rolle, il existe c ∈]a, b[ tel que g′(c) = 0.
Calculons la dérivée de g :

g′(x) = f ′(x) − f(b) − f(a)
b− a

Puisque g′(c) = 0, on a :

f ′(c) − f(b) − f(a)
b− a

= 0

D’où :
f ′(c) = f(b) − f(a)

b− a
.

• Interprétation géométrique : Il existe un point c où la tangente est parallèle au
segment joignant (a, f(a)) à (b, f(b)).

x

y

a bc

Exemple. Montrer que | sin b− sin a| ≤ |b− a|, pour tous réels a et b.
On considère la fonction f(x) = sin x.
La fonction f(x) = sin x est :

— Continue sur R (donc sur tout intervalle [a, b])
— Dérivable sur R (donc sur tout intervalle ]a, b[)
— Sa dérivée est f ′(x) = cos x
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Les hypothèses du théorème des accroissements finis (TAF) sont donc satisfaites
sur tout intervalle [a, b] (avec a < b).

D’après le TAF, il existe c ∈]a, b[ tel que :

f(b) − f(a)
b− a

= f ′(c)

Soit :
sin b− sin a

b− a
= cos c.

En prenant la valeur absolue des deux membres :∣∣∣∣∣sin b− sin a
b− a

∣∣∣∣∣ = | cos c|

Or, pour tout c ∈ R, on a :
| cos c| ≤ 1

Donc : ∣∣∣∣∣sin b− sin a
b− a

∣∣∣∣∣ ≤ 1

En multipliant les deux membres par |b− a| (qui est positif) :

| sin b− sin a| ≤ |b− a|.

Corollaire 5.5.3. Soit f : [a, b] → R une fonction continue sur [a, b] et dérivable sur
]a, b[.

1. Si ∀x ∈]a, b[, f ′(x) ≥ 0 ⇐⇒ f est croissante sur [a, b].
2. Si ∀x ∈]a, b[, f ′(x) ≤ 0 ⇐⇒ f est décroissante sur [a, b].
3. Si ∀x ∈]a, b[, f ′(x) = 0 ⇐⇒ f est constante sur [a, b].
4. Si ∀x ∈]a, b[, f ′(x) > 0, alors f est strictement croissante sur [a, b].
5. Si ∀x ∈]a, b[, f ′(x) < 0, alors f est strictement décroissante sur [a, b].

Démonstration.
1. ⇒) : Soient x1, x2 ∈ [a, b] avec x1 < x2. D’après le théorème des accroissements

finis appliqué à f sur [x1, x2], il existe c ∈]x1, x2[ tel que :

f(x2) − f(x1) = f ′(c)(x2 − x1)

Comme f ′(c) ≥ 0 et x2 − x1 > 0, on a f(x2) − f(x1) ≥ 0, donc f est croissante.

⇐) : Réciproquement, supposons que f est croissante. Fixons x ∈]a, b[. Pour tout
y > x nous avons y − x > 0 et f(y) − f(x) ≥ 0, ainsi le taux d’accroissement vérifie

f(y) − f(x)
y − x

≥ 0.

À la limite, quand y → x, ce taux d’accroissement tend vers la dérivée de f en x et donc
f ′(x) ≥ 0.

Les autres cas se démontrent de manière similaire.
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Remarque. La réciproque de (4) et (5) n’est pas toujours vraie. Par exemple, la fonction
f(x) = x3 est strictement croissante sur R mais sa dérivée f ′(0) = 0.

Corollaire 5.5.4. (Règle de L’Hôpital pour la forme indéterminée 0
0). Soit I un intervalle

ouvert contenant a ∈ R. Soient f et g deux fonctions définies sur I \ {a} telles que :
1. lim

x→a
f(x) = 0 et lim

x→a
g(x) = 0

2. f et g sont dérivables sur I \ {a}
3. g′(x) ̸= 0 sur I \ {a}.

4. lim
x→a

f ′(x)
g′(x) = ℓ où ℓ ∈ R ∪ {+∞,−∞}.

Alors :

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x) = ℓ.

Remarques.
1. Extension aux autres formes indéterminées :

• Forme ∞
∞ : Un corollaire similaire existe lorsque lim

x→a
f(x) = ±∞ et lim

x→a
g(x) =

±∞.

• Le résultat vaut pour x → a+ et x → a−

• Limites infinies : Le résultat s’étend aux cas x → +∞ et x → −∞
2. Si le quotient f ′(x)

g′(x) présente à son tour une forme indéterminée 0
0 ou ∞

∞ , et si les hy-
pothèses sont vérifiées pour les dérivées successives, on peut appliquer itérativement
la règle :

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x) = lim

x→a

f ′′(x)
g′′(x) = · · ·

Exemples.
1. lim

x→0
sin x

x
= lim

x→0
cos x

1 = 1.

2. lim
x→0

ex−1
x

= limx→0
ex

1 = 1.

3. limx→0
sin x−x

x3 = lim
x→0

cos x−1
3x2 = lim

x→0
− sin x

6x
= lim

x→0
− cos x

6 = −1
6 .

4. lim
x→+∞

ln x
x

= lim
x→+∞

1/x
1 = 0.

5. Pour tout entier n ≥ 1 :

lim
x→+∞

ex

xn
= lim

x→+∞

ex

nxn−1 = lim
x→+∞

ex

n(n− 1)xn−2 = · · · = lim
x→+∞

ex

n! = +∞

6. Calculons lim
x→+∞

(
x−

√
x2 − x

)
.

On a pour x > 0 :

x−
√
x2 − x = x

1 −
√

1 − 1
x

 =

(
1 −

√
1 − 1

x

)
1
x

.

Posons t = 1
x
, alors quand x → +∞, t → 0+ :

lim
x→+∞

(
x−

√
x2 − x

)
= lim

t→0+

1 −
√

1 − t

t
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Cette limite est une forme indéterminée 0
0 . Appliquons la règle de l’Hôpital :

lim
t→0+

1 −
√

1 − t

t
= lim

t→0+

1
2
√

1−t

1 = 1
2 .

Donc :
lim

x→+∞

(
x−

√
x2 − x

)
= 1

2

5.6 Formules de Taylor
Soit I ⊆ R un intervalle ouvert.

Définition 5.6.1. (Fonctions de classe Cn)
Pour n ∈ N∗, on dit que f : I → R est une fonction de classe Cn si :
i) f est n fois dérivable sur I
ii) f (n) est continue sur I.
On dit que f est de classe C0 si f est continue sur I.
On dit que f est de classe C∞ si f est de classe Cn pour tout n ∈ N.

Théorème 5.6.2. (Formule de Taylor-Lagrange).
Soit f : I → R une fonction de classe Cn+1 (n ∈ N) et soit a, x ∈ I. Il existe un réel c

entre a et x tel que :

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · · + f (n)(a)

n! (x− a)n + f (n+1)(c)
(n+ 1)! (x− a)n+1

=
n∑

k=0

f (k)(a)
k! (x− a)k + f (n+1)(c)

(n+ 1)! (x− a)n+1. (5.1)

— La somme
n∑

k=0

f (k)(a)
k! (x−a)k représente le polynôme de Taylor de degré n noté Tn(x)

de f au point a. Ce polynôme approxime localement la fonction f au voisinage de
a.

— Le terme f
(n+1)(c)

(n+ 1)! (x− a)n+1 appelé reste de Lagrange quantifie l’erreur d’approxi-

mation commise lorsqu’on remplace f(x) par son polynôme de Taylor.
— Interprétation : La formule montre que toute fonction suffisamment régulière peut

être localement approchée par un polynôme, avec une erreur contrôlée par la dérivée
d’ordre supérieur.

Exemple. Formule de Taylor-Lagrange pour la fonction exponentielle à l’ordre n :

La fonction x 7→ f(x) = ex est de classe Cn+1 sur I = R pour tout n ∈ N. Fixons
a ∈ R. Comme f ′(x) = ex, f ′′(x) = ex, . . . , f (k)(x) = ex pour tout k ∈ N, alors pour tout
x ∈ R, il existe c entre a et x tel que :

ex = ea + ea · (x− a) + ea

2! (x− a)2 + · · · + ea

n! (x− a)n + ec

(n+ 1)!(x− a)n+1.
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En particulier, si l’on se place en a = 0, on retrouve le développement de la fonction
exponentielle en x = 0 :

ex = 1 + x+ x2

2! + x3

3! + · · · + xn

n! + ec

(n+ 1)!x
n+1. (5.2)

Si a = 1, la formule de Taylor-Lagrange à l’ordre n s’écrit

ex = e+ e(x− 1) + e

2!(x− 1)2 + e

3!(x− 1)3 + · · · + e

n! (x− 1)n + ec

(n+ 1)!(x− 1)n+1.

Dans la plupart des cas on ne connaîtra pas la valeur de c. Cependant, il est possible
d’encadrer la différence entre la fonction et son polynôme de Taylor Tn. Ceci s’exprime
par le corollaire suivant :

Corollaire 5.6.3. Si en plus la fonction |f (n+1)| est majorée sur I par un réel M , alors
pour tout a, x ∈ I, on a :

|f(x) − Tn(x)| ⩽M
|x− a|n+1

(n+ 1)! .

Démonstration. Immédiate à partir de la formule de Taylor-Lagrange (5.1).

Exemple. Approximation de exp(0, 01).
Soit f(x) = exp(x) =: ex. La formule de Taylor (5.2) en a = 0 à l’ordre 3 devient :

f(x) = 1 + 1 · x+ 1 · x
2

2! + 1 · x
3

3! + f (4)(c)x4

4! ,

c’est-à-dire f(x) = 1 + x+ x2

2 + x3

6 + ecx4

24 , pour un certain c entre 0 et x.
Appliquons ceci pour x = 0, 01. Le reste étant petit on trouve alors :

exp(0, 01) ≈ 1 + 0, 01 + (0, 01)2

2 + (0, 01)3

6 = 1, 01005016666...

On peut même savoir quelle est la précision de cette approximation : comme f (4)(x) =
ex alors pour c ∈ [0, 0, 01], on a |f (4)(c)| ⩽ e0,01 ⩽ 2. Donc :∣∣∣∣∣f(x) −

(
1 + x+ x2

2 + x3

6

)∣∣∣∣∣ ⩽ 2 · x
4

24 .

Pour x = 0, 01 cela donne :∣∣∣∣∣exp(0, 01) −
(

1 + 0, 01 + (0, 01)2

2 + (0, 01)3

6

)∣∣∣∣∣ ⩽ (0, 01)4

12 .

Comme (0,01)4

12 < 10−9, alors notre approximation donne au moins 8 chiffres exacts après
la virgule.

Théorème 5.6.4. (Formule de Taylor-Young). Soit f : I → R une fonction de classe Cn

et soit a ∈ I. Alors pour tout x ∈ I on a :

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · · + f (n)(a)

n! (x− a)n + (x− a)nε(x),

où ε est une fonction définie sur I telle que ε(x) −−→
x→a

0.
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Notation. Le terme (x − a)nε(x) où lim
x→a

ε(x) = 0 appelé reste de Young est souvent
abrégé en « petit o » (le symbol de Landau) de (x− a)n et est noté o((x− a)n).

Ainsi, o((x− a)n) désigne une fonction telle que :

lim
x→a

o((x− a)n)
(x− a)n

= 0.

Remarque. Lorsque le point de développement est a = 0, la formule de Taylor prend le
nom de Formule de Maclaurin.

Pour une fonction f de classe Cn, la formule de Maclaurin-Young à l’ordre n s’écrit :

f(x) = f(0) + f ′(0)x+ f ′′(0)
2! x2 + f ′′′(0)

3! x3 + · · · + f (n)(0)
n! xn + xnε(x)

avec lim
x→0

ε(x) = 0.

Exemples.
1. Ecrire la formule de Maclaurin-Young des fonctions sin et cos .

Dérivées successives de sin(x) :

f(x) = sin(x) = sin
(
x+ 0 · π2

)
f(0) = 0

f ′(x) = cos(x) = sin
(
x+ 1 · π2

)
f ′(0) = 1

f ′′(x) = − sin(x) = sin
(
x+ 2 · π2

)
f ′′(0) = 0

f (3)(x) = − cos(x) = sin
(
x+ 3 · π2

)
f (3)(0) = −1

f (4)(x) = sin(x) = sin
(
x+ 4 · π2

)
f (4)(0) = 0

Dérivées successives de cos(x) :

g(x) = cos(x) = cos
(
x+ 0 · π2

)
g(0) = 1

g′(x) = − sin(x) = cos
(
x+ 1 · π2

)
g′(0) = 0

g′′(x) = − cos(x) = cos
(
x+ 2 · π2

)
g′′(0) = −1

g(3)(x) = sin(x) = cos
(
x+ 3 · π2

)
g(3)(0) = 0

g(4)(x) = cos(x) = cos
(
x+ 4 · π2

)
g(4)(0) = 1

On démontre par récurrence sur n que les dérivées n-ième de sin et cos s’écrivent :

sin(n)(x) = sin
(
x+ n

π

2

)
, cos(n)(x) = cos

(
x+ n

π

2

)
Formule de Maclaurin-Young à l’ordre n
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Pour sin(x) à l’ordre n = 2p+ 1 :

sin(x) = x− x3

3! + x5

5! − x7

7! + · · · + (−1)p

(2p+ 1)!x
2p+1 + x2p+1ε(x)

Pour cos(x) à l’ordre n = 2p :

cos(x) = 1 − x2

2! + x4

4! − x6

6! + · · · + (−1)p

(2p)! x
2p + x2pε(x)

avec lim
x→0

ε(x) = 0.

Formule de Maclaurin-Young de sin à l’ordre 5 :

sin(x) = x− x3

3! + x5

5! + x5ε(x) = x− x3

6 + x5

120 + x5ε(x)

Formule de Maclaurin-Young de cos à l’ordre 4 :

cos(x) = 1 − x2

2! + x4

4! + x4ε(x) = 1 − x2

2 + x4

24 + x4ε(x)

avec lim
x→0

ε(x) = 0 dans les deux cas.

2. Formule de Maclaurin-Young de
√

1 + x2 à l’ordre 5 :

Dérivées successives (calculées en 0) : soit f(x) =
√

1 + x2

f(x) =
√

1 + x2 f(0) = 1

f ′(x) = x√
1 + x2

f ′(0) = 0

f ′′(x) = 1
(1 + x2)3/2 f ′′(0) = 1

f (3)(x) = − 3x
(1 + x2)5/2 f (3)(0) = 0

f (4)(x) = 12x2 − 3
(1 + x2)7/2 f (4)(0) = −3

f (5)(x) = −60x3 − 45x
(1 + x2)9/2 f (5)(0) = 0

En utilisant les valeurs calculées ci-dessus :

√
1 + x2 = f(0) + f ′(0)x+ f ′′(0)

2! x2 + f (3)(0)
3! x3 + f (4)(0)

4! x4 + f (5)(0)
5! x5 + x5ε(x)

= 1 + 0 · x+ 1
2x

2 + 0 · x3 + −3
24 x

4 + 0 · x5 + x5ε(x)

= 1 + x2

2 − x4

8 + x5ε(x)
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où lim
x→0

ε(x) = 0.

Ou encore

√
1 + x2 = 1 + x2

2 − x4

8 + o(x5) .

3. Calculer la limite suivante en utilisant la formule de Maclaurin-Young à un ordre
convenable

lim
x→0

ex − 1 − x

x2

Formule de Maclaurin-Young pour ex à l’ordre 2 :

ex = 1 + x+ x2

2 + x2ε(x), ε(x) −−→
x→0

0

Substitution :

ex − 1 − x

x2 =

(
1 + x+ x2

2 + x2ε(x)
)

− 1 − x

x2 =
x2

2 + x2ε(x)
x2 = 1

2 + ε(x)

Par passage à la limite :
lim
x→0

(1
2 + ε(x)

)
= 1

2

lim
x→0

ex − 1 − x

x2 = 1
2 .

5.7 Convexité d’une courbe
Définition 5.7.1. (Critère géométrique).

— Une fonction est convexe sur un intervalle si sa courbe est située au-dessus de toutes
ses tangentes sur cet intervalle.

— Une fonction est concave sur un intervalle si sa courbe est située au-dessous de
toutes ses tangentes.

— Les deux notions se caractériseent aussi de la manière suivante : une fonction est
convexe si le segment entre deux points de sa courbe est au-dessus de la courbe, et
concave si le segment est en dessous.

Proposition 5.7.1. (Critère analytique).f ′′(x) > 0 sur I ⇒ f est convexe sur I
f ′′(x) < 0 sur I ⇒ f est concave sur I
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−2 −1 1 2

−2

−1

1

2
A

B

C

D
f(x) = 1

x

Fonction convexe
pour x > 0

Fonction concave
pour x < 0

x

y

5.8 Point d’inflexion
Définition 5.8.1. Si f est deux fois dérivable sur I : x0 est point d’inflexion si f ′′ change
de signe en x0. Autrement dit, un point d’inflexion est un point où la courbe change de
convexité (de convexe à concave ou inversement).

• En un point d’inflexion x0, la courbe traverse sa tangente.
• La tangente en un point d’inflexion est appelée tangente d’inflexion.

2 4
−1

1

2

3

Point d’inflexion

Tangente
Concave Convexe

x

f(x)

Exemple. Soit f(x) = −2x3 + 6x2.

On a f ′(x) = −6x2 + 12x, f ′′(x) = −12x+ 12,∀x ∈ R.
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Signe de f ′′ :

f ′′(x) > 0 pour x < 1 (convexe)
f ′′(x) = 0 pour x = 1
f ′′(x) < 0 pour x > 1 (concave)

D’où
f est convexe sur ] − ∞, 1] et concave sur [1,+∞[.

La courbe représentative admet donc un point d’inflexion en A(1; 4).

−1 1 2 3
−1

1

2

3

4

5

6

7

8

f(x) = −2x3 + 6x2A(1; 4)

Point d’inflexion

Tangente: y = 6(x − 1) + 4

x

f(x)

5.9 Asymptote d’une courbe
Définition 5.9.1. Une asymptote est une droite dont la courbe se rapproche indéfiniment
sans jamais (ou rarement) la toucher.

• Types d’asymptotes :
Asymptote verticale : x = a : se produit quand lim

x→a±
f(x) = ±∞

Asymptote horizontale : y = ℓ : se produit quand lim
x→±∞

f(x) = ℓ

Asymptote oblique : y = ax+ b : se produit quand lim
x→±∞

[f(x) − (ax+ b)] = 0

• Construction du graphe d’une fonction
1. Domaines d’étude

— Domaine de définition
— Parité, périodicité (réduction du domaine)

2. Limites et asymptotes
— Aux bornes du domaine
— Recherche d’asymptotes

3. Dérivée première
— Calcul de f ′(x)
— Signe de f ′(x) et tableau de variations
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— Extremums locaux
4. Dérivée seconde

— Calcul de f ′′(x)
— Signe de f ′′(x) et tableau de convexité
— Points d’inflexion

5. Points particuliers
— Intersections avec les axes
— Valeurs remarquables

6. Tracé de la courbe
(a) Placer les asymptotes (en pointillés)
(b) Marquer les points particuliers
(c) Tracer selon les variations et convexités
(d) Vérifier la cohérence avec les limites

Exemple. Pour f(x) = x2

x− 1 :

−4 −3 −2 −1 1 2 3 4 5 6

−10

−8

−6

−4

−2

2

4

6

8

10

12

14

x = 1

Asymptote verticale

y = x + 1
Asymptote oblique

Maximum (0, 0)

Minimum (2, 4)

Concave
f ′′(x) < 0
] − ∞, 1[

Convexe
f ′′(x) > 0

]1, +∞[

Caractéristiques:
• Domaine de définition : R \ {1}
• Asymptotes : x = 1 (verticale), y =
x + 1 (oblique)

• f ′(x) = x(x − 2)
(x − 1)2

• f ′′(x) = 2
(x − 1)3

• Variations : ↗ sur ] − ∞, 0], ↘ sur
[0, 1[, ↘ sur ]1, 2], ↗ sur [2, +∞[
• Concave sur ] − ∞, 1[, convexe sur
]1, +∞[
• Pas de point d’inflexion

x

f(x)
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