Exercise 3

Q : Construct a recursive descent parser in C for the grammar G» ?

Solution
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
char input[100];
int 1 = 0; // current position in input
char lookahead; // current character
void advance () {
i++;
if (input([i] != '\0")
lookahead = input[i];
else
lookahead = '$"'; // End of input marker

void match (char x) {
if (lookahead == x)
advance () ;
else {

printf ("Expected '%c'", x);

Grammar:
S >aBCd|] dCBe
BHbBIS

C>ca | ac| ¢

void S () ;
void B();
void C();

/*S saBCd| dCBe */
void S () {
if (lookahead == 'a') {

match('a');

B();

cO;
match('d’');
}
else if (lookahead == 'd') {
match('d’');
cO)s
B();
match('e');
}
else {

printf ("Expected 'a' or 'd' to start S");

/*B -bB | g */
void B() {

if (lookahead == 'b') {
match('b');
B();

}

else {

// epsilon production

return;
}
}
/* C > ca | ac | g */
void C() {
if (lookahead == 'c') {
match('c');
match('a');
}
else if (lookahead == 'a') {
match('a');
match('c');
}
else {

// epsilon production

return;

int main () {
printf ("Enter input string: ");
scanf ("$s", input);

lookahead = input[O0];
S(); // Start parsing from the start symbol
if (lookahead == 'S$")
printf ("Parsing successful.\n");
else

printf ("Unexpected trailing characters");

return 0;

