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5.1 Définitions 

Une poutre droite d'axe 𝑥𝑥 est en torsion si son torseur des efforts intérieurs exprimé au point 𝐺𝐺 est 

se réduit à une composante 𝑀𝑀𝑡𝑡. 𝑀𝑀𝑡𝑡 est appelé moment de torsion. 

 

Figure 5.1. Schématisation de la torsion 

Exemples : Les tarauds, certaines clefs employées pour le serrage des écrous, les arbres de 

transmission sont des corps sollicités à la torsion. 

L'étude de la torsion présentée ici se limitera au cadre des poutres droites à sections circulaires. 

Ainsi, les poutres étudiées sont des cylindres de révolution à base circulaire. Cette restriction est 

liée au fait que pour toute section qui n'est pas circulaire, les résultats qui seront présentés sont 

erronés car : 

- les sections ne restent pas planes et se gauchissent, 

- la contrainte de cisaillement qui est perpendiculaire au rayon vecteur ne peut pas être tangente au 

contour non circulaire de la section. 

𝑥𝑥 

𝑀𝑀 

𝑀𝑀 𝑀𝑀𝑡𝑡  
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5.2 Contrainte tangentielle ou de glissement 

5.2.1 Angle de torsion 

Considérons un arbre de section circulaire soumis à un moment de torsion constant. Coupons un 

élément infiniment petit de longueur (𝑑𝑑𝑑𝑑). Sa section avant est soumise à une rotation par rapport 

à sa section arrière d'angle 𝑑𝑑𝑑𝑑. 𝜑𝜑 est appelé angle de torsion.  𝑟𝑟 étant le rayon de la section droite, 

l’angle de torsion est lié à l’angle de cisaillement 𝛾𝛾 par la relation suivante : 

𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝛾𝛾𝛾𝛾𝛾𝛾 

𝛾𝛾 = 𝑟𝑟 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

Le rapport 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  représente l'angle de torsion par unité de longueur de l'arbre et se désigne par 𝜃𝜃. 

Ainsi, on écrit : 

𝛾𝛾 = 𝑟𝑟 𝜃𝜃 

 

 

Figure 5.2. Angle de torsion 

𝑟𝑟 

𝑑𝑑𝑑𝑑 

𝛾𝛾 

𝑑𝑑𝑑𝑑 

𝑥𝑥 
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5.2.2 Contrainte tangentielle 

D'après la loi de Hooke, en désignant par 𝐺𝐺 le module de cisaillement, on peut déduire que la 

contrainte tangentielle 𝜏𝜏 est égale à : 

𝜏𝜏 = 𝐺𝐺𝛾𝛾 = 𝐺𝐺𝐺𝐺 𝜃𝜃 

sur une section, les contraintes tangentielles sont orthoradiales : la contrainte est nulle au centre et 

maximale pour 𝑟𝑟 =  𝑅𝑅. 

 

Figure 5.3. Contraintes tangentielles 

D'après les conditions d'équilibre de la partie de l'arbre isolée, on conclut que les contraintes de 

cisaillement réparties sur la section sont statiquement équivalentes à un couple égal et opposé au 

couple de torsion 𝑀𝑀𝑡𝑡. Pour chaque élément d'aire 𝑑𝑑𝑑𝑑, l'effort tranchant est 

𝑇𝑇 = 𝜏𝜏𝜏𝜏𝜏𝜏. 

 Le moment de cet effort par rapport à l'axe de l'arbre est donc : 

𝑀𝑀𝑡𝑡 = �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐺𝐺𝐺𝐺 𝑟𝑟2𝑑𝑑𝑑𝑑 

En intégrant, on obtient : 

𝑅𝑅 
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𝑀𝑀𝑡𝑡 = 𝐺𝐺𝐺𝐺𝐼𝐼0 

Où 𝐼𝐼0 est le moment d’inertie polaire de la section droite 𝐴𝐴. 

Ainsi la contrainte tangentielle s’écrit en fonction du moment de torsion comme suit : 

𝜏𝜏 =
𝑀𝑀𝑡𝑡𝑟𝑟
𝐼𝐼0

 

5.3 Déformation élastique en torsion 

A partir de la définition de 𝜃𝜃 et de la loi de Hooke,  

𝜏𝜏 = 𝐺𝐺𝐺𝐺 𝜃𝜃 =
𝑀𝑀𝑡𝑡𝑟𝑟
𝐼𝐼0

 

on peut écrire : 

𝜏𝜏
𝑟𝑟

=
𝑀𝑀𝑡𝑡

𝐼𝐼0
= 𝐺𝐺𝜃𝜃 = 𝐺𝐺

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

Soit ∆𝜑𝜑 = 𝜑𝜑2 − 𝜑𝜑2, on aura : 

∆𝜑𝜑 = �
𝑀𝑀𝑡𝑡

𝐺𝐺𝐺𝐺0
𝑑𝑑𝑑𝑑

𝑥𝑥2

𝑥𝑥1
 

Pour un arbre de longueur 𝑙𝑙, on en déduit que la torsion totale est : 

𝜑𝜑 = 𝜃𝜃𝜃𝜃     ;     𝜃𝜃 = 𝑀𝑀𝑡𝑡
𝐺𝐺𝐺𝐺0

 

5.4 Condition de résistance à la torsion. 

Un matériau en torsion reste dans son domaine élastique si la contrainte tangentielle reste inférieure 

à la limite élastique 𝜏𝜏𝑒𝑒. 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜏𝜏𝑒𝑒 
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Pour qu’une pièce sollicitée en torsion résiste en toute sécurité, il faut que la contrainte tangentielle 

soit au plus égale à la résistance pratique au cisaillement 𝜏𝜏𝑝𝑝. 𝑠𝑠 étant un coefficient de sécurité, on 

écrit : 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜏𝜏𝑝𝑝 =
𝜏𝜏𝑒𝑒
𝑠𝑠

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


