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Torsion

5.1 Définitions

Une poutre droite d'axe x est en torsion si son torseur des efforts intérieurs exprimé au point G est

se réduit a une composante M;. M, est appelé moment de torsion.

]
L

Figure 5.1. Schématisation de la torsion

Exemples : Les tarauds, certaines clefs employées pour le serrage des écrous, les arbres de

transmission sont des corps sollicités a la torsion.

L'étude de la torsion présentée ici se limitera au cadre des poutres droites a sections circulaires.
Ainsi, les poutres étudiées sont des cylindres de révolution a base circulaire. Cette restriction est
liée au fait que pour toute section qui n'est pas circulaire, les résultats qui seront présentés sont

erronés car :

- les sections ne restent pas planes et se gauchissent,

- la contrainte de cisaillement qui est perpendiculaire au rayon vecteur ne peut pas étre tangente au

contour non circulaire de la section.
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Torsion

5.2 Contrainte tangentielle ou de glissement

5.2.1 Angle de torsion

Considérons un arbre de section circulaire soumis a un moment de torsion constant. Coupons un
¢lément infiniment petit de longueur (dx). Sa section avant est soumise a une rotation par rapport
a sa section arriére d'angle d¢. ¢ est appelé angle de torsion. r étant le rayon de la section droite,

I’angle de torsion est li¢ a I’angle de cisaillement y par la relation suivante :

rde =ydx
_ . de
y=r dx

d . . s -
Le rapport d—z représente 1'angle de torsion par unité de longueur de I'arbre et se désigne par 6.

Ainsi, on écrit :

R

&

Figure 5.2. Angle de torsion
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5.2.2 Contrainte tangentielle

D'aprées la loi de Hooke, en désignant par G le module de cisaillement, on peut déduire que la

contrainte tangentielle 7 est égale a :

T=G6Gy=Gr0

sur une section, les contraintes tangentielles sont orthoradiales : la contrainte est nulle au centre et

maximale pour r = R.

Figure 5.3. Contraintes tangentielles

D'apres les conditions d'équilibre de la partie de 'arbre isolée, on conclut que les contraintes de
cisaillement réparties sur la section sont statiquement équivalentes a un couple égal et opposé au

couple de torsion M,. Pour chaque ¢lément d'aire dA, l'effort tranchant est
T = tdA.

Le moment de cet effort par rapport a 1'axe de 'arbre est donc :
M, = jrrdA = GO ridA

En intégrant, on obtient :
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Mt == GGIO

Ou [, est le moment d’inertie polaire de la section droite A.

Ainsi la contrainte tangentielle s’écrit en fonction du moment de torsion comme suit :

_ Myr
T= I

5.3 Déformation élastique en torsion

A partir de la définition de 0 et de la loi de Hooke,

M,r
T=060r6 =——
Iy
on peut écrire :
M, ¢
—=—=00=06G—
Iy d

Soit Ap = ¢, — @,, on aura :

p=| —dx
x1 GIO

Pour un arbre de longueur [, on en déduit que la torsion totale est :

_ M
Gl

=60l ; 6

5.4 Condition de résistance a la torsion.

Torsion

Un matériau en torsion reste dans son domaine élastique si la contrainte tangentielle reste inférieure

a la limite élastique t,.

Tmax S Te
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Torsion

Pour qu’une piece sollicitée en torsion résiste en toute sécurité, il faut que la contrainte tangentielle
soit au plus €gale a la résistance pratique au cisaillement 7,,. s €tant un coefficient de sécurite, on

écrit :

Tmax S Tp = —
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