
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université de Jijel

Faculté des Sciences exactes et de l’informatique

Département d’informatique

– Module –

Environnements et Programmation Dédiés

Master 1 : IA

Enseignant du module : Dr. Hemza FICEL

Contact: hemza.ficel@univ-jijel.dz

TP 5 - Recherche sémantique avec
Milvus, Spring Boot et Serveur MCP

3

Objectifs

À la fin de ce TP, vous serez capable de :

Comprendre pourquoi une base de données vectorielle est nécessaire pour les systèmes d’IA

modernes

Implémenter une recherche sémantique (au lieu d’une recherche SQL classique)

Comprendre le rôle d’un serveur MCP (Model Context Protocol) pour connecter une IA à des

services externes

4

Travail demandé

L’objectif de ce TP est de mettre en place un système de question–réponse intelligent basé sur :

➢ une base de données vectorielle (Milvus),

➢ un backend Spring Boot,

➢ des embeddings générés automatiquement (Google gemini),

➢ un serveur MCP permettant à un LLM d’interroger dynamiquement les données.

5

Architecture

Utilisateur

|

LLM (Claude Desktop ou autre)

|

Serveur MCP

|

Spring Boot API

|

Milvus (BD vectorielle)

6

Parie 1

1. Installer et lancer une base de données vectorielle (Milvus 2.6.X) à l’aide de Docker

2. Vérifier l’état de votre base de données (http://localhost:9091/webui/)

http://localhost:9091/webui/

8

Parie 2

1. Créer un nouveau projet Spring Boot 3.5.X

2. Vous pouvez utiliser Spring Initializr ou votre IDE.

3. Choisir Maven comme système de build.

4. Définir Java 17 ou supérieur.

5. Ajouter les dépendances suivantes dans le pom.xml :

<dependencies>
<!-- Pour créer des API REST -->
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<!-- Pour l’indexation et la recherche vectorielle -->
<dependency>

<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-advisors-vector-store</artifactId>

</dependency>

<!-- Connecteur Milvus pour stocker des vecteurs -->
<dependency>

<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-vector-store-milvus</artifactId>

</dependency>

<!-- Génération d’embeddings via Google GenAI -->
<dependency>

<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-google-genai-embedding</artifactId>

</dependency>

<!-- Swagger / OpenAPI pour la documentation de l’API -->
<dependency>

<groupId>org.springdoc</groupId>
<artifactId>springdoc-openapi-starter-webmvc-ui</artifactId>
<version>2.8.14</version>

</dependency>
</dependencies>

10

Parie 2

1. Configurer Spring AI pour utiliser le modèle d’embeddings Gemini (Google) comme moteur de

représentation vectorielle.

2. Configurer votre projet Spring Boot afin que : les embeddings soient générés automatiquement,

et qu’ils soient stockés dans Milvus (Spring AI se charge de transformer le texte en vecteurs, et

de stocker ces vecteurs dans Milvus).

spring.application.name=pdf-rag-search

--- Google Gemini Configuration (API Google AI Studio) ---
API Key
spring.ai.google.genai.embedding.api-key=your-API-key
Le modèle text-embedding-004 est le plus performant pour le français
spring.ai.google.genai.embedding.text.options.model=text-embedding-004

Configuration Milvus
spring.ai.vectorstore.milvus.client.host=localhost
spring.ai.vectorstore.milvus.client.port=19530

Nom de la collection qui sera creer automatiquement
spring.ai.vectorstore.milvus.collection-name=my_documents
Dimension pour embeddings
spring.ai.vectorstore.milvus.embedding-dimension=768
Initialisation automatique du schéma
spring.ai.vectorstore.milvus.initialize-schema=true

Implémenter votre logique
métier

Package DTO

package net.ficel.demo.dto;

import java.util.Map;

public record SearchResultDto(
String id,
String text,
Map<String, Object> metadata,
Double score

) {}

package net.ficel.demo.dto;

public record QuestionRequest(String question) {}

package net.ficel.demo.dto;

import org.springframework.ai.document.Document;

public final class DocumentMapper {

private DocumentMapper() {}

public static SearchResultDto toDto(Document doc) {
return new SearchResultDto(

doc.getId(),
doc.getText(),
doc.getMetadata(),
doc.getScore()

);
}

}

Package Service

package net.ficel.demo.service;

import org.springframework.ai.document.Document;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.stereotype.Service;
import java.util.List;
import java.util.Map;

@Service
public class DocumentIndexerService {

private final VectorStore vectorStore;

public DocumentIndexerService(VectorStore vectorStore) {
this.vectorStore = vectorStore;

}

public void ingestText(List<String> contents) {

try {
List<Document> documents = contents.stream()

.filter(text -> text != null && !text.isBlank())

.map(text -> new Document(text, Map.of("category", "info"))).toList();

// Cette ligne fait tout : Embedding via Google + Stockage dans Milvus
vectorStore.add(documents);
System.out.println(documents.size() + " passages indexés avec succès.");

} catch (Exception e) {
throw new RuntimeException("Erreur lors de l'indexation des passages : " + e.getMessage(), e);

}

}

}

package net.ficel.demo.service;

import java.util.List;
import org.springframework.ai.document.Document;
import org.springframework.ai.vectorstore.SearchRequest;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.stereotype.Service;
import net.ficel.demo.dto.DocumentMapper;
import net.ficel.demo.dto.SearchResultDto;

@Service
public class SemanticSearchService {

private final VectorStore vectorStore;

public SemanticSearchService2(VectorStore vectorStore) {
this.vectorStore = vectorStore;

}

public List<SearchResultDto> search(String query) {

int queryLength = query.split("\\s+").length;
double similarityThreshold = 0.1;
int topK = 4;
SearchRequest searchRequest = SearchRequest.builder()

.query(query)

.topK(topK)

.similarityThreshold(similarityThreshold).build();

// 2. Effectuer la recherche vectorielle
List<Document> results = vectorStore.similaritySearch(searchRequest);
return results.stream().map(DocumentMapper::toDto).toList();

}
}

Package Controller

package net.ficel.demo.controller;

import java.util.List;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.multipart.MultipartFile;

import net.ficel.demo.service.DocumentIndexerService;

@RestController
@RequestMapping("/api/v1/documents")
public class DocumentController {

private final DocumentIndexerService indexerService;

public DocumentController(DocumentIndexerService indexerService) {
this.indexerService = indexerService;

}

@GetMapping("/")
public String sayHello() {

return "Bienvenue dans Document Controller";
}

@PostMapping("/texts")
public ResponseEntity<String> ingestText(@RequestBody List<String> contents) {

indexerService.ingestText(contents);
return ResponseEntity.ok("Textes indexés avec succès");

}
}

Créer L’endpoint REST « POST /api/v1/questions » dans le Controller « SearchController »

pour effectuer une recherche vectorielle dans Milvus, récupérer les passages les plus proches et

retourner les résultats au format JSON.

package net.ficel.demo.controller;

import org.springframework.web.bind.annotation.*;

import net.ficel.demo.dto.QuestionRequest;
import net.ficel.demo.dto.SearchResultDto;
import net.ficel.demo.service.SemanticSearchService;

import java.util.List;

@RestController
@RequestMapping("/api/v1")
public class SearchController {

private final SemanticSearchService semanticSearchService;

public SearchController(SemanticSearchService semanticSearchService) {
this.semanticSearchService = semanticSearchService;

}

@PostMapping("/questions")
public List<SearchResultDto> askQuestion(@RequestBody QuestionRequest request) {

return semanticSearchService.search(request.question());

}
}

25

Parie 3

1. Tester la génération des embeddings Gemini et leur indexation dans Milvus via l’endpoint

d’ingestion.

2. Utilisez l’outil « swagger » pour les testes. Vous pourrez accéder à la documentation interactive

de ton API via l’URL par défaut :

http://localhost:8080/swagger-ui/index.html

http://localhost:8080/swagger-ui/index.html

[
"Le service doit être redémarré après toute modification du fichier de configuration.",
"Les sauvegardes automatiques sont exécutées chaque nuit à 02:00 sur le serveur

principal.",
"Un redémarrage à chaud est possible uniquement lorsque le système est en mode

maintenance.",
"En cas d’échec de démarrage, vérifier les logs situés dans le répertoire /var/log/app.",
"La modification des paramètres de sécurité nécessite des droits administrateur.",
"Le mode maintenance empêche les utilisateurs externes d’accéder à l’application.",
"Les fichiers de configuration sont chargés uniquement au démarrage de l’application.",
"Une sauvegarde manuelle peut être déclenchée via l’interface d’administration.",
"Après une mise à jour du système, un redémarrage complet est fortement recommandé.",
"Les erreurs critiques sont enregistrées avec un niveau de log ERROR."

]

📄Fichier JSON d’ingestion

À envoyer à ton endpoint : POST /api/v1/documents/texts

http://localhost:9091/webui/

🔍 Exemples de recherches sémantiques (à tester)

À envoyer à ton endpoint : POST /api/v1/questions

{
"question": " Faut-il relancer l’application après un changement ? "

}

Résultats attendus (top)

✅ "Le service doit être redémarré après toute modification du fichier de configuration."

📌 Aucun mot commun exact avec “relancer”

➡️ La recherche keyword échouerait

➡️ La recherche sémantique fonctionne

Recherche 1 – reformulation naturelle

{
"question": " Comment éviter que les utilisateurs accèdent au système ?"

}

Résultats attendus (top)

✅ "Le mode maintenance empêche les utilisateurs externes d’accéder à l’application."

📌 Le mot empêcher ≠ éviter

📌 Le sens est reconnu

Recherche 2 – intention utilisateur

{

"question": " Où trouver les informations en cas de problème au démarrage ?"
}

Résultats attendus (top)

✅ "En cas d’échec de démarrage, vérifier les logs situés dans le répertoire

/var/log/app."

✅ "Les erreurs critiques sont enregistrées avec un niveau de log ERROR."

Recherche 3 – diagnostic / support

{
"question": " Que faire après une mise à jour ?"
}

Résultats attendus (top)

✅ "Après une mise à jour du système, un redémarrage complet est fortement

recommandé."

Recherche 4 – recommandation implicite

{
"question": "Est-ce que je peux lancer une sauvegarde moi-même ?"
}

Résultats attendus (top)

✅ "Une sauvegarde manuelle peut être déclenchée via l’interface d’administration."

📌 Aucun mot commun :

lancer ≠ déclencher

moi-même ≠ manuelle ➡️ C’est exactement là que la sémantique brille

Recherche 5 – action utilisateur indirecte

38

Partie 4

➢ Créer un nouveau projet Spring Boot qui agit comme un client pour votre API REST et un

serveur MCP.

➢ Ce serveur doit servir d’intermédiaire entre : un LLM et votre API Spring Boot de recherche

sémantique.

➢ Ajouter les dépendances suivantes dans le pom.xml :

<dependencies>

<!--
Spring AI – MCP Server (Model Context Protocol)
transforme ton app Spring en serveur MCP consommable par un LLM

-->
<dependency>

<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-mcp-server</artifactId>

</dependency>

<!--
Spring Boot Web
fournit le serveur HTTP et l’infrastructure REST

-->
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

</dependencies>

spring.application.name=tp-epd-mcp-server

Configuration du serveur MCP
Desactive le serveur Web pour plus de legerete (Transport Stdio)
spring.main.web-application-type=none
server.port=8877

Configuration Identitée MCP
spring.ai.mcp.server.name=epd-demo-mcp
spring.ai.mcp.server.version=0.0.1

Nettoyage de la console pour ne pas corrompre le flux Stdio
spring.main.banner-mode=off
logging.pattern.console=
Redirige les logs vers stderr pour pouvoir debugger sans casser le protocole
logging.level.root=INFO

URL de l'API cible (par défaut localhost:8080 si non défini)
api.questions.url=http://localhost:8080

Implémenter votre logique
métier

Package tools

package net.ficel.demo.tools;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.http.HttpStatusCode;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestClient;

@Service
public class QuestionApiClient {

private final RestClient restClient;

public QuestionApiClient(@Value("${api.questions.url:http://localhost:8080}") String baseUrl) {
this.restClient = RestClient.builder()

.baseUrl(baseUrl)

.build();
}

public String postQuestion(String content) {
return restClient.post()

.uri("/api/v1/questions")

.body(new QuestionRequest(content))

.retrieve()

.onStatus(HttpStatusCode::is4xxClientError, (request, response) -> {
throw new RuntimeException("Client Error: " + response.getStatusCode());

})
.body(String.class);

}

// Record simple pour le JSON
public record QuestionRequest(String question) {}

}

package net.ficel.demo.tools;

import org.springframework.ai.tool.annotation.Tool;
import org.springframework.stereotype.Component;

@Component
public class MyMcpToolServer {

private final QuestionApiClient apiClient;

public MyMcpToolServer(QuestionApiClient apiClient) {
this.apiClient = apiClient;

}

@Tool(description = "Get server name")
public String getServerName() {

return "Demo d'un serveur MCP pour le TP EPD";
}

@Tool(description = "Permet de poser une question à l'API interne sur le port 8080")
public String askApiQuestion(String question) {

try {
return apiClient.postQuestion(question);

} catch (Exception e) {
return "Erreur lors de l'appel à l'API : " + e.getMessage();

}
}

}

La classe principale

package net.ficel.demo;

import java.util.List;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.ai.support.ToolCallbacks;
import org.springframework.ai.tool.ToolCallback;

import net.ficel.demo.tools.MyMcpToolServer;

@SpringBootApplication
public class TpEpdMcpServerApplication {

public static void main(String[] args) {
SpringApplication.run(TpEpdMcpServerApplication.class, args);

}

@Bean
public List<ToolCallback> danTools(MyMcpToolServer mcpToolServer) {

return List.of(ToolCallbacks.from(mcpToolServer));
}

}

Compiler et récupérer le lien du Jar de votre

serveur MCP

Download Claude for desktop

Download Claude | Claude

https://claude.com/download

Déclarer votre serveur MCP comme outil en

ajoutant la configuration suivante à

"mcpServers" dans le fichier de configuration

JSON de Claude

{
"mcpServers": {
"spring-ai-mcp-demo": {

"command": "java",
"args": [
"-Dspring.ai.mcp.server.transport=STDIO",
"-jar",
"C:\\Users\\asus\\Documents\\workspace-spring-tools-for-eclipse-

4.30.0.RELEASE\\tp-epd-mcp-server\\target\\tp-epd-mcp-server-0.0.1-
SNAPSHOT.jar"

]
}

}

, ...
}

Déclarer votre serveur MCP comme outil auprès de Claude Desktop

58

Partie 5

➢ Tester l’appel du serveur MCP par un LLM via un le prompt suivant :

Tu es un assistant technique disposant d'un accès à notre infrastructure
interne via un serveur MCP.

Utilise uniquement les informations fournies dans ce contexte pour répondre
aux questions. Si l'information n'est pas disponible dans le contexte, indique
clairement que tu ne peux pas répondre basé sur les documents fournis.

Tester les exemples de recherches sémantiques

précédents

{
"question": " Que faire après une mise à jour ?"
}

Résultats attendus (top)

✅ "Après une mise à jour du système, un redémarrage complet est fortement

recommandé."

Recherche 4 – recommandation implicite

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40
	Diapositive 41
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46
	Diapositive 47
	Diapositive 48
	Diapositive 49
	Diapositive 50
	Diapositive 51
	Diapositive 52
	Diapositive 53
	Diapositive 54
	Diapositive 55
	Diapositive 56
	Diapositive 57
	Diapositive 58
	Diapositive 59
	Diapositive 60
	Diapositive 61
	Diapositive 62
	Diapositive 63

