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I. Boutana Asymptotic Analysis

Asymptotic analysis is a local and analytical method used to approximate mathemati-
cal functions or the solutions to a problems. This course aims to introduce students to the
fundamental principles of asymptotic methods and to develop the essential skills required
for a foundational understanding of asymptotic analysis.
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Functional Analysis during the third semester at the Department of Mathematics.
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Chaptere 1

Order Relations and Asymptotic
Comparison Relations

Introduction
In this chapter, we denote by K either the field of real numbers R or the field of

complex numbers C. Let D ⊂ K, and let x0 ∈ D. Consider two functions f and g defined
on D.

Definition

Definition 1.1 (Order Relation – Little-o).

We say that f is a little-o of g near x0 (as x → x0) if there exists a neighborhood V

of x0 and a function ϕ defined on D ∩ V such that:

f(x) = g(x)ϕ(x), and lim
x→x0

ϕ(x) = 0. (1.1)

In this case, we write:
f(x) = o(g(x)) as x→ x0. (1.2)

Remark

Remark.

We say that f is negligible with respect to g near x0. In other words, f tends to zero
faster than g as x→ x0.

If lim
x→x0

f(x)
g(x) = 0, then we also have f = o(g).

Equivalent Formulation
If g(x) does not vanish near x0, the definition above can equivalently be written as:

lim
x→x0

f(x)
g(x) = 0. (1.3)
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I. Boutana Asymptotic Analysis

Examples
• x = o(1) as x→ 0.

• sin(x) = o(x) as x→ 0.

• x2 = o(x) as x→ 0.

Remark

Interpretation.

The notation f = o(g) expresses that f becomes insignificant compared to g near
a certain point. It provides a precise way to compare the rate at which functions
approach zero or infinity.

1.1 Remarks and Definitions
Remark 1.4

If g does not vanish on D ∩ V , the previous definition is equivalent to:

f = O(g) ⇐⇒ f

g
is bounded on D ∩ V.

Definition 1.5 – Relation of Equivalence (∼)

We say that f is equivalent to g in the neighborhood of x0 (or when x→ x0) if there
exists a neighborhood V of x0 and a function ε defined on D ∩ V such that:

∀x ∈ D ∩ V : f(x) = (1 + ε(x))g(x) and lim
x→x0

ε(x) = 0.

We then say that f is equivalent to g near x0, and we write:

f ≈ g or f(x) ∼ g(x), x→ x0.

Remark 1.6

If the limit lim
x→x0

f(x)
g(x) exists, the previous definition is equivalent to:

f ∼ g ⇐⇒ lim
x→x0

f(x)
g(x) = 1.
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Remark 1.7

If the functions f and g depend on a parameter t ∈ I, i.e. f = f(x, t) and g = g(x, t),
then the previous relations are said to be uniform if the function ε and the constant
k are independent of t; otherwise, they are said to be non-uniform.

2. Examples
Example 1.8

Let α > β > 0. Consider the polynomial:

P (x) = a0x
2 + a1x

2+1 + · · ·+ anx
2+n

with a0 6= 0 and an 6= 0. We have the following relations:

(a.1) xα = o(xβ) (b.1) P (x) = O(xα) (c.1) P (x) ∼0 a0x
α

(a.2) xβ = o(xα) (b.2) P (x) = O(xβ) (c.2) P (x) ∼∞ anx
β

(a.3) ln x = o(xx) (b.3) sin x = O(1) (c.3) sin x ∼0 x

(a.4) x2 = o(ex) (b.4) sinh x = O(ex) (c.4) sinh x ∼+∞
1
2e
x

Example 1.9

1. Let f(x, t) = ext+2 and g(x, t) = ex
2+xt. Then f(x, t) = ε(x)g(x, t) where

ε(x) = e2−x2 . Since lim
x→∞

ε(x) = 0 and ε depends only on x, f(x, t) is uniformly
negligible with respect to g(x, t) near ∞.

2. Let f(x, t) = x2 + 2xt and g(x, t) = xt+ 2t2. Then f(x, t) = ε(x, t)g(x, t) where
ε(x, t) = x

t
. Since lim

x→0
ε(x, t) = 0 and ε depends on t, f(x, t) is negligible with

respect to g(x, t) near 0, but not uniformly.
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Proposition 1.1.1. (Links between order relations)
Let f, g and h be functions.
In the neighborhood of the point x0, we have:

1. If f(x) = o(g(x)), then f(x) = O(g(x)). (the reverse is false)

2. If f(x) = o(h(x)) and g(x) = O(h(x)), then f(x) + g(x) = o(h(x)).

3. If f(x) = O(g(x)) and g(x) = o(h(x)), then f(x) = o(h(x)).

4. If f(x) ∼ g(x), then f(x) = g(x) + o(g(x)).

5. If f(x) ∼ g(x), then f(x) = O(g(x)) and g(x) = O(f(x)).

6. If f(x) ∼ g(x) and g(x) = o(h(x)), then f(x) = o(h(x)).

7. If f(x) = o(g(x)) and g(x) ∼ h(x), then f(x) = o(h(x)).

Proposition 1.1.2. (operations with order relations).
Let f, g, h and k be functions, and let λ and µ two real numbers.
In the neighborhood of the point x0, we have:

1. If f(x) = o(g(x)), then λf(x) = o(λg(x)).

2. If f(x) = o(g(x)) and g(x) = o(h(x)), then λf(x) + µg(x) = o(h(x)).

3. If f(x) = o(g(x)) and h(x) = o(k(x)), then f(x)h(x) = o(g(x)k(x)).

4. If f(x) = o(g(x)), then |f(x)|α = o(|g(x)|α), α > 0.

5. Let x ∈ D, if f(x) = o(g(x)) and f and g are continuous on D, then
∫ x0

x
f(t) dt = o

(∫ x0

x
|g(t)| dt

)
.

6. Let ξ ∈]α, β[ a parameter, and f(x, ξ) and g(x, ξ) two functions depend on the
parameter ξ. If f(x, ξ) = o(g(x, ξ)) uniformly, then

∫ β

α
f(x, ξ) dξ = o

(∫ β

α
|g(x, ξ)| dξ

)
.

• The above properties are also valid for (O) and (∼).

Proposition 1.1.3. .
Let f, g and h are functions verifying f(x) ∼ g(x) (f and g nonzero in a neighborhood of
a point x0), then,
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1. f(x)h(x) ∼ g(x)h(x).

2. h(x)
f(x) ∼

h(x)
g(x) .

3. f(x)
h(x) ∼

g(x)
h(x) .

Remarks 1.1.1. .

1. If lim
x→x0

f(x) = l, then f(x) ∼ l.

2. f(x) ∼ g(x)⇒ lim
x→x0

f(x) = lim
x→x0

g(x).

3. f(x) ∼ g(x)⇒ sign(f(x)) = sign(g(x)) in a neighborhood of x0.

Proposition 1.1.4. .
Let f and g ions two functions verifying f(x) ∼ g(x), and ϕ a function defined in a
neighborhood of a point b ∈ R such that ϕ(x) −→

x 7→b
a.

Then,
f ◦ ϕ(x) ∼

b
g ◦ ϕ(x).

Remarks 1.1.2. .

1. f1(x) = o(g1(x)) and f2(x) = o(g2(x)) do not imply that f1(x) + f2(x) = o(g1(x) +
g2(x)).

2. f(x) = o(g(x)) does not imply that f ′(x) = o(g′(x)).

• The two preceding remarks also apply to the relations O and ∼.

3. Never write f(x) ∼ 0.

4. f(x) ∼ g(x) does not imply that lim
x→x0

(f(x)− g(x)) = 0.
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1.2 Asymptotic Sequences
Definition 1.2.1 (gauge functions). . Let (δn(x))n∈N be a sequence of functions defined
on D ⊂ R, and let x0 ∈ D. We say that (δn(x))n is an
textbfasymptotic sequence (or a sequence of gauge functions) in a neighborhood of x0 if

∀n ∈ N : δn+1(x) = o(δn(x)), x→ x0.

Remark 1.2.1. If δn+1(x) = o(δn(x)), then δn+k(x) = o(δn(x)) for all k > 0.

Examples 1.2.1. 1. δn(x) = (x−x0)n,
(
δn(x)

)
n∈N

is an asymptotic sequence near x0.

2. δn(x) = 1
xn
,
(
δn(x)

)
n∈N

is an asymptotic sequence near ∞.

3. let g be a function defined on D ⊂ R such that lim
x→x0

g(x) = 0, then δn(x) = (g(x))n,(
δn(x)

)
n∈N

is an asymptotic sequence near x0.

Remark 1.2.2. An asymptotic sequence is not necessarily convergent. Exemple: δn =
x

1
x , x→∞

lim
x→∞

δn+1

δn
= lim

x→∞

x
1

n+1

x
1
n

= lim
x→∞

x
−1

n(n+1) = 0

but, lim
n→∞

δn(x) = lim
x→∞

x
1
n =∞, i.e δn(x) divergent.

Theorem 1.2.1. Every subsequence of an asymptotic sequence is itself an asymptotic
sequence.

Proof. let αn = δϕ(n), where ϕ : N →
n7→ϕ(n)

Nis an increasing function.

αn+1(x) = δϕ(n+1) = o
(
δϕ(n+1)(x)

)
= o

(
δϕ(n)(x)

)
near x0. Because ϕ is increasing n+ 1 >

n⇒ ϕ(n+ 1) > ϕ(n).

Theorem 1.2.2. Let (δn(x))n∈N be an asymptotic sequence near x0. If the functions δn(x)
are integrable, then the sequence

βn(x) =
(∫ x

x0
|δn(t)| dt

)
n∈N

is also asymptotic near x0.

Proof. Let
gn(x) =

∫ x

x0
|fn(t)| dt.

We will show that (gn(x))n∈N is an asymptotic sequence, i.e.,

∀n ∈ N : gn+1(x) = o(gn(x)).
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gn+1(x) =
∫ x

x0
fn+1(t) dt =

∫ x

x0
o(fn(t)) dt = o

(∫ x

x0
|fn(t)| dt

)
= o(gn(x)).

Theorem 1.2.3. Let (δn(x, ξ))n∈N be a uniformly asymptotic sequence compared to the
parameter ξ ∈]a, b[, in a neighborhood of x0.
If the functions δn(x, ξ) are integrable with respect to ξ, then the sequence

βn(x) =
(∫ b

a
|fn(x, ξ)| dξ

)
n∈N

is asymptotic in a neighborhood of x0.

Theorem 1.2.4. 1. If (δn(x))n∈N be an asymptotic sequence near x0, and α > 0, then
| δn(x) |α is also asymptotic near x0.

2. If (δn(x))n∈N and (βn(x))n∈N are two equivalent sequences .
∀n, δn(x) = O(βn(x)) and βn(x) = O(δn(x)), ∀x ∈ V (x0).
if one is asymptotic, the other is also asymptotic near x0 near x0.

Remark 1.2.3. The differentiations are not allowed.
δn(x) is asymptotic near x0 ; δ′n(x) is asymptotic near x0. Exemple:

Definition 1.2.2 (1.17). Two sequences (fn(x))n∈N and (gn(x))n∈N are said to be equiv-
alent in a neighborhood of x0 if

∀n ∈ N : fn(x) ∼ gn(x) near x0.

Theorem 1.2.5. Let (fn(x))n∈N and (gn(x))n∈N be two equivalent sequences in a neighbor-
hood of x0. Then (fn(x))n∈N is asymptotic near x0 if and only if (gn(x))n∈N is asymptotic
near x0.

Proof. Assume that (fn(x))n∈N is an asymptotic sequence near x0, i.e.

∀n ∈ N : fn+1(x) = o(fn(x)).

We show that (gn(x))n∈N is also asymptotic near x0, i.e.

∀n ∈ N : gn+1(x) = o(gn(x)).

Indeed,

∀n ∈ N : gn+1(x) = O(fn+1(x)) = O(o(fn(x))) = o(fn(x)) = o(O(gn(x))) = o(gn(x)).
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Hence, (gn(x))n∈N is asymptotic near x0. The converse implication is proved in the same
way.

1.3 Asymptotic Series
Definition 1.3.1 (1.19). The series

∑
n>0

anfn(x)

is said to be asymptotic in a neighborhood of x0 if the sequence (fn(x))n∈N is asymptotic
near x0.

In this case, we have

∑
n>0

anfn(x) =
n∑
k=0

akfk(x) + o(fn(x)), ∀n ∈ N.

Or equivalently,

∑
n>0

anfn(x) =
n∑
k=0

akfk(x) +O(fn+1(x)), ∀n ∈ N.

Example 1.3.1 (1.20). 1. Power series are asymptotic series.

2. The series ∑
n>0

32n+1 sinn x

is an asymptotic series near 0.
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Chaptere 2

Asymptotic Expansion of Functions

2.1 Asymptotic Expansion
Generally, an asymptotic expansion has in commun with a TAylor expansion the fact

that it provides an approximation of a function, which is expressed as a sum of functions,
arranged from the ”largest” to the ”smalles”, together with a remainder term that is neg-
ligible compared with all the other trems in the sum. This is what is called a comparison
scale.
These functions can be of any nature, whereas a Taylor expansion contains only poly-
nominal terms.

Definition 2.1.1. Let f be a function defined on a subset D ⊂ R and let x0 ∈ D. Let
(δi(x))i∈N be an asymptotic sequence in a neighborhood of x0.

We say that f admits an asymptotic expansion near x0 with respect to the sequence
(δi(x))i∈N of order N if there exists a numerical sequence (ai)i∈N such that

f(x)−
n∑
i=0

aiδi(x) = o(δn(x)). (2.1)

= O(fn+1(x)).

If relation (2.1) holds for all n > 0, we say that f is expandable in asymptotic series
with respect to the sequence (δi(x))i∈N in a neighborhood of x0, and we write

f(x) ∼
x0

∑
i≥0

aiδi(x).

Remark 2.1.1. The Taylor expansion near x0 is an asymptotic expansion; it suffices to
take δn(x) = (x− x0)n.

Example 2.1.1. Near 0, we have

1
1 + t

=
∑
n>0

(−1)ntn.
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If we take t = sin x, then
1

1 + sin x =
∑
n>0

(−1)n(sin x)n.

Since the sequence (δn(x))n∈N = (sinn x)n∈N is asymptotic near 0, Indeed, lim
x→0

δn+1(x)
δn(x) =

lim
x→0

sinn+1

sinn
= lim

x→0
sinx = 0.

It follows that
g(x) = 1

1 + sin x
is expandable near 0 in asymptotic series with respect to the sequence (δn(x))n∈N =
(sinn x)n∈N.

Theorem 2.1.1. The asymptotic expansion with respect to an asymptotic sequence (δi(x))n∈N
of a given function f(x) if it exists it is unique.
In other words: The coefficients of the asymptotic expansion of a function f(x) with
respect to an asymptotic sequence (δi(x))i∈N are unique.

Proof. Assume that

f(x) =
n∑
i=0

aiδi(x) + o(δn(x)) =
n∑
i=0

biδi(x) + o(δδn(x)).

For n = 0 we have a0 = lim
x→x0

f(x)
δ0(x) and b0 = lim

x→x0

f(x)
δ0(x) . From the uniqueness of the limit

we find a0 = b0.
Assume that the property is true up to order n, i.e. ai = bi, ∀i = 0, n. We have for n+ 1

an+1 = lim
x→x0

f(x)−∑N
i=0 aiδi(x)

δn+1(x) = lim
x→x0

f(x)−∑n
i=0 biδi(x)

δn+1(x) = bn+1.

So ai = bi∀i ≥ 0, hence the uniqueness of the coefficients.

Definition 2.1.2. we say that f(x) and g(x) are asymptotically equal (equivalent) in
the neighborhood of x0 with respect to the asymptotic sequence (δi(x))i∈N if f(x) and
g(x) admit the same asymptotic expansion in the neighborhood of x0 with respect to the
asymptotic sequence (δi(x))i∈N. That is to say

f(x)− g(x) = o(δi(x)), x→ x0,∀i = 1, 2, ...

Proposition 2.1.1 (Operations on the asymptotic expansion). Let (δi(x))i∈N be an
asymptotic sequence in a neighborhood of x0, and let f and g be two functions defined on
D such that

f(x) ∼
x0

∑
i≥0

aiδi(x) and g(x) ∼
x0

∑
i≥0

biδi(x).
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Then the following properties hold:

1. If α, β ∈ R such that (α, β) 6= (0, 0), then

αf(x) + βg(x) ∼
x0

∑
i≥0

(αai + βbi)δi(x).

2.

f(x).g(x) ∼
x0

(∑
i≥0

aiδi(x)
)(∑

i≥0
biδi(x)

)
.

∼
x0
a1b1δ

2
i (x) + ...

3. If the functions f(x) and δi(x) are integrable, then
∫ x

x0
f(t) dt ∼

x0

∑
i≥0

ai

∫ x

x0
δi(t) dt.

Proof. .
(1) We have

f(x) ∼x0

∑
i≥0

aiδi(x) ⇐⇒ f(x) =
n∑
k=0

akδk(x) + o(δn(x)),

and
g(x) ∼x0

∑
n>0

bnδn(x) ⇐⇒ g(x) =
n∑
k=0

bkδk(x) + o(δn(x)).

Hence,

αf(x) + βg(x) =
n∑
k=0

akδk(x) + o(δn(x)) +
n∑
k=0

bkδk(x) + o(δn(x))

=
n∑
k=0

(ak + bk)δk(x) + o(δn(x)).

Thus,
f(x) + g(x) ∼x0

∑
n>0

(an + bn)δn(x).

(2) From

f(x) ∼x0

∑
n>0

anδn(x) ⇐⇒ f(x) =
n∑
k=0

akδk(x) + o(δn(x)),

13
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we have
∫ x

x0
f(t) dt =

∫ x

x0

(
n∑
k=0

akδk(t) + o(δn(t))
)
dt =

n∑
k=0

ak

∫ x

x0
δk(t) dt+ o

(∫ x

x0
δn(t) dt

)
.

Hence, ∫ x

x0
f(t) dt ∼x0

∑
n>0

an

∫ x

x0
δn(t) dt.

Proposition 2.1.2. Let
f(x, t) ∼t→0

∑
n>0

ai(x)δi(t)

uniformly for t ∈ [a, b].
•If the functions f(x, t) and δi(t) are integrable with respect to t, then

∫ t

0
f(ξ, t) dξ ∼x0

∑
i>0

ai(t)
∫ t

0
δi(ξ) dξ.

•likewise, if the functions f(x, t) and ai(x) are integrable with respect to x, then

∫ b

a
f(x, t) dx ∼x0

∑
i>0

∫ b

a
ai(x) dxδi(x).

Remark 2.1.2. Differentiation is not allowed:

f(x, t) ∼x0

∑
i>0

ai(t)δi(x) ; ∂f(x, t)
∂t

∼x0

∑
i>0

a′i(t)δi(x)

Theorem 2.1.2. If f(x, t) ∼0
∑
i>0

ai(x)δi(t) and if

∂f(x, t)
∂x

∼0
∑
i>0

bi(x)δi(t).

Then,
bi(x) = a′i(x) = dai(x)

dx

.

2.2 Calculation of the coefficients of an asymptotic
expansion

Let (δi(x))i∈N be a sequence asymptotique, let f(x) be a function defined on D, x0 ∈ D.
let’s suppose that f(x) admits an asymptotic expansion x0 with respect to the δi(x),

14
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x→ x0.
f(x) =

n∑
i=0

aiδi(x) + o(δn(x)), ∀n ∈ N.

We divide both sides by δ0(x). (We always assume that the limits exist).
we find

f(x)
δ0(x) = a0 + a1

δ1(x)
δ0(x) + ...+ o(fn(x))

δ0(x) .⇒ a0 = lim
x→x0

(
f(x)
δ0(x) − a1

δ1(x)
δ0(x) + ...+ o(fn(x))

δ0(x)

)
.

⇒ a0 = lim
x→x0

f(x)
δ0(x) ,

since lim
x→x0

δi(x)
δ0(x) = 0, i ≥ 1 and lim

x→x0

o(fn(x))
δ0(x) = 0

Likewise,

f(x)− a0δ0(x)
δ1(x) = a1 + a2

δ2(x)
δ1(x) + ...+ o(fn(x))

δ1(x) ⇒ a1 = lim
x→x0

(
f(x)− a0δ0(x)

δ1(x)

)
.

and by recurrence,

a0 = lim
x→x0

f(x)
δ0(x) , and an = lim

x→x0

(
f(x)−∑n−1

i=0 aiδi(x)
δn(x)

)
, ∀n ≥ 1

.
By induction, we can show that

an = lim
x→x0

f(x)−∑n−1
k=0 akfk(x)

fn(x) , ∀n ∈ N.

Example 2.2.1. Let
f(x) = 1

sin x

(
1− x

ex − 1

)
.

We will develop the asymptotic expansion of f(x) with respect to the sequence (xn) near
0.
• (δn)n = (xn)n is an asymptotique sequence:

lim
x→x0

δn+1

δn
= lim

x→x0

xn+1

xn
= lim

x→x0
x = 0.

15
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Calculation of a0:

a0 = lim
x→0

f(x)
x0 = lim

x→0

1
sin x

(
1− x

ex − 1

)
= lim

x→0

x

sin x

(1
x
− 1
ex − 1

)
= lim

x→0

(1
x
− 1
ex − 1

)
= lim

x→0

ex − x− 1
x(ex − 1) −−−−−−−−−−→(L’Hopital’s rule)

lim
x→0

ex − 1
(x+ 1)ex − 1 −−−−−−−−−−→(L’Hopital’s rule)

lim
x→0

ex

(x+ 2)ex = 1
2 .

Hence, a0 = 1
2 .

Calculation of a1:

a1 = lim
x→0

f(x)− 1
2

x
= lim

x→0

( 1
x sin x

(
1− x

ex − 1

)
− 1

2x

)
= lim

x→0

(
x

sin x

(
1
x2 −

1
x(ex − 1)

)
− 1

2x

)
= lim

x→0

(
1
x2 −

1
x(ex − 1) −

1
2x

)

= lim
x→0

(2− x)ex − 2− x
2x2ex − 2x2 −−−−−−−−−−→

(L’Hopital’s rule)
lim
x→0

(1− x)ex − 1
(2x2 + 4x)ex − 4x

−−−−−−−−−−→
(L’Hopital’s rule)

lim
x→0

−xex

(2x2 + 8x+ 4)ex − 4 −−−−−−−−−−→(L’Hopital’s rule)
lim
x→0

(−1− x)ex
(2x2 + 12x+ 12)ex = − 1

12 .

Therefore,
1

sin x

(
1− x

ex − 1

)
= 1

2 −
x

12 + o(x).

2.3 The method of integration by Parts to obtain an
asymptotic expansion

Let u and v be two functions of class C1 on [a, b] ⊂ R. The formula of integration by
parts is given by ∫ b

a
u′(t)v(t) dt =

[
u(t)v(t)

]b
a
−
∫ b

a
u(t)v′(t) dt. (2.2)

Let f be a function defined on [a, b] by an integral of the form

f(x) =
∫ b(x)

a(x)
g(x, t) dt.

We shall apply formula (2.2) to f in order to obtain an asymptotic expansion of f .

Example 2.3.1. Let the function f be defined on ]0,+∞[ by

f(x) =
∫ +∞

0

e−t

x+ t
dt.

We shall use the method of integration by parts to obtain an asymptotic expansion of f

16
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near +∞ with respect to the sequence (δn(x))n = (x−n)n.
Let u′(t) = e−t and v(t) = 1

x+ t
. Then

f(x) =
[
− e−t

x+ t

]+∞

0
−
∫ +∞

0

e−t

(x+ t)2 dt = 1
x
−
∫ +∞

0

e−t

(x+ t)2 dt.

By repeating integration by parts three times, we obtain

f(x) = 1
x
− 1
x2 + 2

x3 − 2 · 3
∫ +∞

0

e−t

(x+ t)4 dt.

By induction, one shows that

f(x) =
n∑
k=1

(−1)k−1(k − 1)!
xk

+ (−1)nn!
∫ +∞

0

e−t

(x+ t)n+1 dt.

It is clear that the sequence (δn(x))n = (x−n)n is asymptotic near +∞. Indeed,

lim
x→∞

δn+1(x)
δn(x) = lim

x→∞

xn

xn+1 = lim
x→∞

1
x

= 0.

It remains to verify that

Rn(x) =
∫ +∞

0

e−t

(x+ t)n+1 dt = o
( 1
xn

)
.

We have

|Rn(x)| =
∣∣∣∣∣
∫ +∞

0

e−t

(x+ t)n+1 dt

∣∣∣∣∣ ≤ 1
xn+1

∫ +∞

0
e−t dt = 1

xn+1 .

Hence,
∣∣∣∣∣Rn(x)
δn(x)

∣∣∣∣∣ = |xnRn(x)| < xn

xn+1 = 1
x
−−−→
x→∞

0 ⇒ Rn(x) = o
( 1
xn

)
.

Therefore,
f(x) =

∫ +∞

0

e−t

x+ t
dt ∼

∑
n≥1

(−1)n−1(n− 1)!
xn

.

2.4 Expansion of an Inverse Function
Recall that the inverse of a function f is a function f−1 such that

f(f−1(x)) = f−1(f(x)) = x,

17
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at least on part of the domain.
For a function such as f(x) = x3 + x, it is difficult to find an explicit formula for

f−1(x). However, we can find the asymptotic series of f−1(x) as x→∞.

Example 2.4.1. Find the first three terms of the inverse of the function

f(x) = x3 + x

as x→∞.
Solution: Since x3 + x ∼ x3 when x → ∞, it is natural to assume that the inverse

function behaves like 3
√
x as x→∞. But what will be the next term of the series?

The idea is to extract this leading term by writing

f−1(x) = 3
√
x+ g(x),

with g(x) = o( 3
√
x) and to seek an asymptotic approximation of g(x).

Since we know that f(f−1(x)) = x, we have

( 3
√
x+ g(x))3 + 3

√
x+ g(x) = x.

That is,
x+ 3g(x) 3

√
x2 + 3g2(x) 3

√
x+ g3(x) + 3

√
x+ g(x) = x.

Using the fact that g(x) = o( 3
√
x), it is not necessary to keep the terms containing the

square (or higher powers) of the unknown function. Hence,

x+ 3g(x) 3
√
x2 + o

(
g(x) 3
√
x2
)

+ 3
√
x+ g(x) = x.

By eliminating the terms that are known to be smaller, we obtain

3g(x) 3
√
x2 ∼ − 3

√
x ⇒ g(x) ∼ −1

3
1

3
√
x
.

We now have the first two terms of the asymptotic series:

f−1(x) ∼ 3
√
x− 1

3
1

3
√
x

as x→∞.

To find the next term of the series, we repeat the process, assuming that

f−1(x) = 3
√
x− 1

3
3

√
1
x

+ h(x),

18
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with h(x) = o

(
1

3
√
x

)
.

Since f(f−1(x)) = x, we have

(
3
√
x− 1

3
1

3
√
x

+ h(x)
)3

+ 3
√
x− 1

3
1

3
√
x

+ h(x) = x.

Expanding, we obtain

(
3
√
x− 1

3
1

3
√
x

)3

+3
(

3
√
x− 1

3
1

3
√
x

)2

h(x)+3
(

3
√
x− 1

3
1

3
√
x

)
h2(x)+h3(x)+ 3

√
x−1

3
1

3
√
x

+h(x) = x.

Any term involving h2(x) is negligibly small, so we can write

(
3
√
x− 1

3
1

3
√
x

)3

+ 3
(

3
√
x− 1

3
1

3
√
x

)2

h(x) + o
(

3
√
x2h(x)

)
+ 3
√
x− 1

3
1

3
√
x

+ h(x) = x.

It is clear that the largest term containing h(x) is 3 3
√
x2h(x). Thus,

(
x− 3
√
x+ 1

3
1

3
√
x
− 1

27x

)
+ 3 3
√
x2h(x) + 3

√
x− 1

3
3

√
1
x

+ o
(

3
√
x2h(x)

)
= x.

Simplifying,
1

27x = 3 3
√
x2h(x) + o

(
3
√
x2h(x)

)
,

which means
3 3
√
x2h(x) ∼ 1

27x.

Hence,
h(x) ∼ 1

81 3
√
x5
.

Therefore, we obtain

f−1(x) ∼ 3
√
x− 1

3
1

3
√
x

+ 1
81 3
√
x5

as x→∞.

Let’s recap the steps that were used

1. Determine the first term of the asymptotic series. This can often be done using
simple approximations.

2. Add an unknown function to the series obtained so far. Assume this function is
smaller than the previous term.

3. Substitute this series into the equation that the function must satisfy.
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4. Expand this equation carefully in an asymptotic manner, cancelling terms as much
as possible.

5. The remaining terms should yield an equation for the unknown function, which is
now easy to solve. This provides the next term of the series.

6. Repeat steps (2–5) to obtain additional terms in the series.

2.5 Expansion of an Implicit Function
Sometimes, it is easy to determine the asymptotic series for the solution of an equation

y = f(x), but it generally becomes a problem when the equation is of the form f(x, y) = 0.
If there are three or more terms in an equation f(x, y) = 0, usually two of the terms

dominate the others. Therefore, we can form an asymptotic equation using only the two
dominant terms. Such equations are usually very easy to solve.

The problem, of course, lies in determining which two terms are dominant. This can
only be established through trial and error. In each case, we must verify whether the
other terms are indeed small compared to those assumed to be dominant.

Example 2.5.1. Find the behavior of the function defined implicitly by

x2 + xy − y3 = 0 as x→ +∞.

solution: Since there are three nonzero terms, there are three possible pairs of terms.
First choice: Suppose y3 is smaller when x → +∞, i.e. y3 = o(xy) and y3 = o(x2).

Then we have

x2 + xy + o(xy) = 0 ⇐⇒ x2 ∼ −xy ⇒ y ∼ −x.

But then y3 ∼ −x3 6= o(x2). Contradiction.
Second choice: Suppose x2 is smaller. Then we have

xy − y3 + o(xy) = 0 ⇐⇒ y3 ∼ xy ⇒ y ∼ ±
√
x.

But then xy ∼ ±x3/2 = o(x2)⇒ xy = o(x2). Contradiction.
Third choice: Suppose xy is smaller. Then we have

x2 − y3 + o(x2) = 0 ⇐⇒ y3 ∼ x2 ⇒ y ∼ x2/3.

In this case, xy ∼ x5/3 = o(x2)⇒ xy = o(x2), which proves that the choice is valid.
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• To find the next term in the series, we set y = x2/3 +g(x) with g(x) = o(x2/3). Then
we have

x2 + x(x2/3 + g(x)) = (x2/3 + g(x))3

⇐⇒ x2 + x5/3 + xg(x) = x2 + 3x4/3g(x) + o(x4/3g(x))

⇐⇒ x5/3 + xg(x) = 3x4/3g(x) + o(x4/3g(x))

⇐⇒ x5/3 = 3x4/3g(x) + o(x4/3g(x))

⇐⇒ x5/3 ∼ 3x4/3g(x)

⇐⇒ g(x) ∼ x1/3

3 = o(x3/2).

Thus,

y ∼ x2/3 + x1/3

3 as x→ +∞.

Let’s recap the steps that were used in this method.

1. Guess which terms may be negligible.

2. Eliminate those terms to form a simpler equation and solve it exactly.

3. Check that the solution is consistent with step 1. If not, try eliminating different
terms.

4. Determine the next term to verify that the leading behavior is correct.

5. Verify all other possible pairs of dominant terms, since more than one solution may
exist.
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Chaptere 3

Asymptotic study of functions
defined by integrals

3.1 Introduction
In this chapter, we study the asymptotic behavior of certain parametric integrals.
We have already seen that integration by parts is a way to find the asymptotic ap-

proximations of integrals, but its application is limited.
An important class of integrals that, under certain conditions, lends itself to this

method of integration by parts belongs to the class of Laplace integrals of the forme

I(x) =
∫ ∞

0
f(t) e−xt dt. (3.1)

3.1.1 Watson’s lemma
We begin with Watson’s lemma, which provides an asymptotic expansion for Laplace

type inegrals of the first kind.

Theorem 3.1.1 (Watson’s lemma). .
Let f be a fonction of a real variable t with complex values, satisfying

1. f is continues on the interval [0,∞].

2. f admits an asymptotic expansion

f(t) ∼
∞∑
k=0

ak t
λk , t→ 0+

3. For a certain fixed c > 0
f(t) = O(ect), t→ +∞,

Then, ∫ ∞
0

f(t) e−xt dt ∼
n→∞

∞∑
k=0

ak
Γ(λk + 1)
xλk+1 .
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Proof. By conditions (1, 2 and 3), the integral converges for x > c. (we can integrate
term by term).
According to (3)

Recall ∫ ∞
0

e−y yλn dy = Γ(λn + 1).

Special case
I(x) =

∫ ∞
0

e−xt tα g(t) dt,

and g(t) has a Taylor expansion in the neighborhood of 0

g(t) =
∞∑
n=0

g(n)(0)
n! tn,

we apply Watson’s theorem

f(t) = tα
∞∑
n=0

g(n)(0)
n! tn

=
∞∑
n=0

g(n)(0)
n! tn+α.

So, I(x) = ∼
n→∞

∞∑
n=0

g(n)(0)
n!

Γ(n+ α + 1)
xn+α+1 .

Example 3.1.1. Consider the function I defined on R+ by

I(x) =
∫ π/2

0
e−x tan2 θ dθ.

With the change of variable t = tan2 θ we have θ = arctan
√
t, dθ = 1

2
√
t(1 + t)

dt

and
I(x) =

∫ ∞
0

e−xt

2
√
t(1 + t)

dt.

Let’s pose f(t) = 1
2
√
t(1 + t)

f is continues on ]0,∞[, and we have in the neighborhood of 0,

f(t) = 1
2
√
t

1
(1 + t) = 1

2
√
t

∞∑
k=0

(−1)ktk =
∞∑
k=0

(−1)k
2 tk−

1
2 .

Moreover,
∫ +∞

0
|f(t)|dt =

∫ +∞

0

1
2
√
t(1 + t)

dt = arctan(
√
t)|+∞0 = π

2 < +∞.

So, f(t) =
∑
k≥0

akt
k−1

2 with ak = 1
2(−1)k.
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Applying Watson’s lemma gives

I(x) ∼
x→∞

∞∑
k=0

ak
Γ(k + 1

2)

xk+ 1
2

=
∞∑
k=0

(−1)kΓ(k + 1
2)

2xk+ 1
2

=
√
π

2 x−1/2 −
√
π

4 x−3/2 + · · · .

Recall
Γ(n) = (n− 1)!, n ∈ N ∗ .
Γ(1

2) =
√
π, Γ(3

2) = 1
2
√
π

If a ∈ R+,
∫ ∞

0
e−ax

2
dx = 1

2

√
π

a
.

3.2 Laplace method
Let I = [a, b] be a real interval (finite or infinite), x a large positive parameter and f

and g be two functions defined and continuous on I.
Let us consider the integral ∫ b

a
f(t)exϕ(t) dt. (3.2)

To give an asymptotic expansion of the integral I(x), we can apply Watson’s lemma, we
make the change of variable: u = −ϕ(t), so, t = ϕ−1(−u), and du = ϕ′(t)dt. if ϕ′ 6= 0,
dt = − du

ϕ′(ϕ−1(−u)) . Then,

I(x) = −
∫ −ϕ(b)

−ϕ(a)

f(ϕ−1(−u))
ϕ′(ϕ−1(−u))e

−xu dt.

But if ϕ′ is zero, we cannot apply Watson’s lemma and we need Laplace’s method

Theorem 3.2.1 (Laplace’s Theorem). Let I = [a, b] be a real interval (finite or infinite),
(or (−∞,+∞)) be an interval of R. Let f and ϕ be two functions defined on I such that
f is continuous on I and ϕC2(I,R). Assume that:

1.
∫ b

a
exg(t)|f(t)| dt <∞ for all x > 0;

2. g′ vanishes at a single point t0 ∈ I (ϕ′(t0)) = 0 and g′′(t0) < 0;
t a strict absolute maximum point of ϕ

3. f(t0) 6= 0.

Then, as x→ +∞,

I(x) :=
∫ b

a
f(t)exϕ(t) dt ∼ f(t0)exϕ(t0)

√
2π

x |g′′(t0)| .
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Proof. By Taylor’s integral formula applied to g about t0 we have

g(t) = g(t0) + 1
2g
′′(t0)(t− t0)2 + (t− t0)3

2!

∫ 1

0
(1− u)2g(3)(t0 + u(t− t0)) du

= g(t0) + (t− t0)2 θ(t),
(3.3)

where
θ(t) = 1

2g
′′(t0) + 1

2(t− t0)
∫ 1

0
(1− u)2g(3)(t0 + u(t− t0)) du.

Let J = [t0 − a, t0 + a] ⊂ I be a small neighborhood of t0 and set K = I \ J . Then

L(x) =
∫
J
f(t)exg(t) dt+

∫
K
f(t)exg(t) dt =: LJ(x) + LK(x).

We study LJ first. From (3.3) we get

LJ(x) = exg(t0)
∫
J
f(t) ex(t−t0)2θ(t) dt.

Perform the change of variable v = (t− t0)
√
x, i.e.

t = t0 + v√
x
,

to obtain
LJ(x) = exg(t0)

√
x

∫ β

−β
h(v, x) dv,

where β = a
√
x and

h(v, x) = f
(
t0 + v√

x

)
exp

(
v2 θ

(
t0 + v√

x

))
.

Since θ(t)→ 1
2g
′′(t0) as t→ t0, for fixed v and large x we have

h(v, x)→ f(t0) exp
(

1
2g
′′(t0) v2

)
.

Hence, by dominated convergence (justified by the integrability hypothesis and choice of
J), ∫ β

−β
h(v, x) dv ∼ f(t0)

∫ ∞
−∞

exp
(

1
2g
′′(t0) v2

)
dv = f(t0)

√
2π
|g′′(t0)| .

Therefore
LJ(x) ∼ f(t0)exg(t0)

√
2π

x |g′′(t0)| .

The contribution LK(x) from the complement is exponentially smaller and does not affect
the leading term; this concludes the proof.
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|h(t0, x)| ≤ e(xθ(t0)+η)2 sup
|v|≤β|t0|

[
t0 + v√

x

t0

]
≤ 12g′′β(t0) + η, ∀ v ∈ [−β, β].

Donc
|h(t0, x)| ≤ e(θ(t0)+η)2 sup

|v|≤β|t0|

[
t0 + v√

x

t0

]
= Ce(θ(t0)+η)2

.

h est dominÃľe par une fonction positive, intÃľgrable et indÃľpendante de x. DâĂŹaprÃĺs
le thÃľorÃĺme de continuitÃľ sous le signe intÃľgral, on obtient :

lim
x→+∞

∫ β

−β
h(t0, x) dv =

∫ +∞

−∞
h(t0) dv = f(t0)

∫ +∞

−∞
e
− v2

2g′′(t0) dv.

Et comme θ(t) = g(t)− g(t0)
t− t0

< 0 car g(t0) est le maximum de g, donc

∫ β

−β
h(t0, x) dv x→+∞−→ f(t0)

∫ +∞

−∞
e
− v2
−g′′(t0) dv = f(t0)

√
2π

−g′′(t0) .

DâĂŹoÃź
L1(x) ∼x→+∞ f(t0)exg(t0)

√
2π

x g′′(t0) .

ÃĽtude de Lk
D’aprÃĺs ce qui prÃľcÃĺde,

Lk(x)
L1(x) ∼x→+∞ e−xg(t0)

√
xg′′(t0)
−2π

∫
K
f(t)exg(t) dt. (3.2)

Donc, pour prouver que Lk(x) = o(L1(x)), il suffit de prouver que le cÃťtÃľ droit de
(3.2) tend vers 0.

On a :
g(t) < g(t0) ⇒ ∃ε > 0 : g(t) < g(t0)− ε.

Donc
xg(t) = g(t) + (x− 1)g(t) < g(t0) + (x− 1)(g(t0)− ε).

Alors
∣∣∣∣e−xg(t0)√x

∫
K
f(t)exg(t)dt

∣∣∣∣ ≤ e−xg(t0)√x
∫
K
|f(t)|eg(t0)e(x−1)(g(t0)−ε)dt.

=
√
xe−ε(x−1)

∫
K
|f(t)|eg(t0)dt.
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≤M
√
xe−εx −→ 0.

Donc
f ∼ g, hi = o(g)⇒ f + hi ∼ g.

3.3 Method of stationary phase(Fourier method)
This method is a derivative of Laplace’s method; it allows us to study the behavior of

integrals of the following form:

I(x) =
∫ b

a
f(t)eixϕ(t), dt x→ +∞(or −∞) (3.4)

we will assume that f has compact support in ]a, b[. (supp(f) = {x ∈ X : f(x) 6= 0})
The function f(t) is said the amplitude.
ϕ(t): is referred to as the phase, and if its derivative is zero, it is said to be stationary.
Note: The behavior of the integral I is approximated by its contributions near the
endpoints of integration and near the points where the phase ϕ(t) is stationary, that is,
points for which the first derivative of ϕ is zero, or more generally, points where the first
k − 1 derivatives are non-zero and the kth derivative is zero.
We first note that I is finite.
Indeed,

|
∫
f(t)eixϕ(t) dt| ≤

∫ b

a
|f(t)| |eixϕ(t)| dt

≤
∫ b

a
|f(t)| dt <∞

(because f has a compact support).
the asymptotic behavior of I determined by the points satisfying ϕ′(t) = 0. two cases are
distinguished:
ϕ′ not equal to zero on the supp(f): stationary phase phase.
ϕ′ equal to zero on the supp(f): unstationary phase phase.

Theorem 3.3.1 (Stationary phase, compact support case). Let f and g be C∞ functions
on the interval [a, b]. Assume that f has compact support with supp(f) ⊂ [a, b], and that
g has no critical points on supp(f) (i.e. g′(t) 6= 0 for all t ∈ supp(f)). Define

F (x) =
∫ b

a
f(t) eixg(t) dt.
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Then for every integer n ≥ 0,

F (x) = O(x−n) (x→∞).

Proof. Since g′(t) 6= 0 on supp(f) we may write

eixg(t) = 1
ixg′(t)

d

dt

(
eixg(t)

)
.

Hence
F (x) = 1

ix

∫ b

a

f(t)
g′(t)

d

dt

(
eixg(t)

)
dt.

Integration by parts gives

F (x) = 1
ix

[
f(t)
g′(t)e

ixg(t)
]b
a

− 1
ix

∫ b

a

(
f(t)
g′(t)

)′
eixg(t) dt.

The boundary term vanishes because f has compact support, and therefore

F (x) = 1
x

∫ b

a
f1(t) eixg(t) dt,

where we set
f1(t) = −1

i

(
f(t)
g′(t)

)′
.

Since f1 is again C∞ with compact support we may repeat the integration by parts. By
induction one obtains for every n ∈ N

F (x) = 1
xn

∫ b

a
fn(t) eixg(t) dt,

where fn is a C∞ function with compact support depending on f and g. Consequently
there exists a constant M (depending on n) such that

∣∣∣xnF (x)
∣∣∣ =

∣∣∣∣∣
∫ b

a
fn(t) eixg(t) dt

∣∣∣∣∣ ≤
∫ b

a
|fn(t)| dt = M,

which yields F (x) = O(x−n) as x→∞ for every n.
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Remark 3.3.1. In the previous theorem, if one of the integration endpoints is infinite
(that is, a = −∞ or b = +∞), the condition “f has compact support included in [a, b]”
should be replaced as appropriate, by

1. if a = −∞: Supp(f) =]−∞, c[⊂]−∞, b[ and lim
t→−∞

f(t) = 0.

2. if b = +∞: Supp(f) =]c,+∞[⊂]a,+∞[ and lim
t→+∞

= 0.

3. if a = −∞, and b = +∞: lim
t→−∞

f(t) = lim
t→+∞

f(t) = 0.

Remark 3.3.2. If ϕ′(t) 6= 0 near the endpoints of a, that is, if there are no critical
points, then the resultis modified. The terms from the bracket of integration by parts must
be added to it.

Example 3.3.1.
I(x) =

∫ b

a
eixt, dt x→ +∞

f(t) = 1, ϕ(t) = t, ϕ′(t) = 1 6= 0.

∫ b

a
eixt, dt =

[
eixt

ix

]b
a

= eixb − eixa

ix
= O(x−n) (x→∞).

3.4 Stationary Phase Method
Theorem 3.4.1. Let f ∈ C∞c ([a, b]), ϕ ∈ C∞c ([a, b]).
Assume that f has compact support contained in [a, b], and that ϕ has a unique critical
point t0 ∈ supp(f), and that this point is not degenerate. ( i.e ∃tc ∈ supp(f), ϕ′(tc) = 0,
and ϕ′′(tc) 6= 0).
Then, as x→ +∞,

I(x) =
∫ b

a
f(t)eixϕ(t) dt ∼ f(tc)eixϕ(t0)eiπ/4(Sgnϕ′′(tc))

√
2π

x |ϕ′′(tc)|
,

where s = sgn(ϕ′′(tc)) ∈ {±1}.

Proof. Using Taylor’s formula around t0, we write

g(t) = g(t0) + (t− t0)2θ(t), θ(t0) = 1
2g
′′(t0).

Let I = [t0 − a, t0 + a] be a neighbourhood of t0, and set K = [a, b] \ I. Then,

F (x) =
∫
I
f(t)eixg(t) dt+

∫
K
f(t)eixg(t) dt = F1(x) + FK(x).
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From Theorem 3.7, one has FK(x) = O(x−n) for every n, so it suffices to analyse F1(x).
Make the change of variables v = (t− t0)

√
x. Then

F1(x) = eixg(t0) 1√
x

∫ β

−β
h(v, x) eiv2θ(t0+v/

√
x) dv,

where β = a
√
x and

h(v, x) = f

(
t0 + v√

x

)
exp

(
iv2(θ(t0 + v/

√
x)− θ(t0))

)
.

Since h(v, x) is uniformly bounded, by continuity under the integral sign we obtain

lim
x→+∞

F1(x)e−ixg(t0)√x = f(t0) eisπ/4
√

π

|θ(t0)| .

Substituting θ(t0) = 1
2g
′′(t0) yields the stated asymptotic formula.

Remark 3.4.1. If the stationary point t0 lies at an endpoint a or b, the result must be
divided by 2. If several stationary points occur, their contributions add.

Example: the Airy function
The Airy function is defined by

Ai(x) = 1
2π

∫ +∞

−∞
ei(xt+t

3/3) dt.

As x→ +∞, make the substitution t = u
√
x, giving

Ai(x) =
√
x

2π

∫ +∞

−∞
eix

3/2(u+u3/3) du.

Let g(u) = u+ u3

3 . Then g′(u) = 1 + u2 6= 0, and

Ai(x) = 1
2πix

∫ +∞

−∞

1
g′(u)

(
eix

3/2(u+u3/3)
)′
du.

This yields the classical asymptotic behaviour:

Ai(x) ∼ 1
2
√
π
x−1/4 e−

2
3x

3/2
, x→ +∞.
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Asymptotic Analysis of the Airy Integral
We note that

f1(u) = 1
g′(u) = 1

1 + u2 .

By integration by parts, we obtain

Ai(x) = 1
2πix

[∫ +∞

−∞

2u
(1 + u2)2 e

ix3/2(u+u3/3) du

]
.

Observe that
lim

u→±∞

2u
(1 + u2)2 = 0.

By Theorem 3.7,
∫ +∞

−∞

2u
(1 + u2)2 e

ix3/2(u+u3/3) du = O
( 1
x3n/2

)
, ∀n ∈ N.

Hence,
Ai(x) = 1

x
O
( 1
x3n/2

)
= O

( 1
x3n/2+1

)
, ∀n ∈ N.

Asymptotics as y → −∞
Let y = −x, and perform the substitution t = u

√
y. Then

Ai(y) =
√
y

2π

∫ +∞

−∞
eiy

3/2(−u+u3/3) du.

Set g(u) = −u+ u3/3. Then

g′(u) = u2 − 1, g′′(u) = 2u,

so g has two critical points at u = ±1.
Let ε > 0 sufficiently small. Decompose the integral as

∫ +∞

−∞
=
∫ −1−ε

−∞
+
∫ −1+ε

−1−ε
+
∫ 1−ε

−1+ε
+
∫ 1+ε

1−ε
+
∫ +∞

1+ε
.

Thus,
Ai(y) = I1(y) + I2(y) + I3(y) + I4(y) + I5(y).

By integration by parts (see the asymptotics as x→ +∞), we obtain

Ik(y) = O

(
1
y

)
, k = 1, 3, 5.
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Asymptotics of I2(y)
We apply Theorem 3.10. Let f(u) = 1 and g(u) = −u+ u3/3. Then

g′(u) = u2 − 1, g′′(u) = 2u.

On the interval [−1− ε,−1 + ε], we have

g′(u) = 0 ⇐⇒ u = u0 = −1.

We set f(u) = 1 and g(u) = −u+ u3

3 , so that

g′(u) = u2 − 1, g′′(u) = 2u.

On the interval [−1− ε, −1 + ε], the equation g′(u) = 0 is equivalent to

u = u0 = −1.

We note that
f1(u) = 1

g′(u) = 1
1 + u2 .

By integrating by parts, we obtain

Ai(x) = 1
2πix

∫ +∞

−∞

1
(1 + u2)2 e

xϕ(u) du− 1
2πix

∫ +∞

−∞

2u
(1 + u2)2 e

xϕ(u) du.

We observe that
lim

u→±∞

2u
(1 + u2)2 = 0,

hence, by Theorem 3.7,
∫ +∞

−∞

2u
(1 + u2)2 e

x3/2(−u+u3/3) du = O
( 1
x3n

)
, ∀n ∈ N.

Thus,
Ai(x) = 1

x
O
( 1
x3n

)
= O

( 1
x3n+1

)
, ∀n ∈ N.

2) Asymptotic equivalence as x→ −∞
Setting y = −x and applying the change of variables t = u

√
y, we obtain

Ai(y) =
√
y

2π

∫ +∞

−∞
ey

3/2(−u+u3/3) du.
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Let g(u) = −u+ u3

3 . Then g′(u) = u2− 1, and g admits two critical points at u = ±1.
Let ε > 0 sufficiently small. We decompose the integral as

∫ +∞

−∞
=
∫ −1−ε

−∞
+
∫ −1+ε

−1−ε
+
∫ 1−ε

−1+ε
+
∫ 1+ε

1−ε
+
∫ +∞

1+ε
.

Hence,
Ai(y) = I1(y) + I2(y) + I3(y) + I4(y) + I5(y).

By an integration by parts argument (see the equivalence near +∞),

Ik(y) = O

(
1
y

)
, k = 1, 3, 5.

Asymptotic form of I2(y)
We apply Theorem 3.10.
Let f(u) = 1 and g(u) = −u+ u3

3 , so that

g′(u) = u2 − 1, g′′(u) = 2u.

On the interval [−1− ε,−1 + ε], the equation g′(u) = 0 is equivalent to

u = u0 = −1.
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Chaptere 4

Disturbance problem
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Conclusion General

Ce cours a couvert les aspects fondamentaux de l’analyse mathÃľmatique avancÃľe.
Les concepts prÃľsentÃľs constituent la base pour des Ãľtudes plus approfondies en anal-
yse fonctionnelle, Ãľquations aux dÃľrivÃľes partielles, et autres domaines des mathÃľ-
matiques pures et appliquÃľes.

Perspectives Futures
Les Ãľtudiants intÃľressÃľs sont encouragÃľs Ãă explorer les domaines suivants:

• Analyse ..........

• ThÃľorie des opÃľrateurs

• ÃĽquations aux ................

• Analyse ...................
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