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I. Boutana Asymptotic Analysis

Asymptotic analysis is a local and analytical method used to approximate mathemati-
cal functions or the solutions to a problems. This course aims to introduce students to the
fundamental principles of asymptotic methods and to develop the essential skills required

for a foundational understanding of asymptotic analysis.
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Chaptere 1

Order Relations and Asymptotic

Comparison Relations

Introduction

In this chapter, we denote by K either the field of real numbers R or the field of
complex numbers C. Let D C K, and let o € D. Consider two functions f and g defined
on D.

Definition 1.1 (Order Relation — Little-o).

We say that f is a little-o of g near xy (as * — xg) if there exists a neighborhood V
of ¢ and a function ¢ defined on D NV such that:

f(@) = g(@)p(e), and Jim p(z) =0, (1.1)
In this case, we write:
f(z) =o0(g(x)) asx — x. (1.2)
‘Remark

Remark.

We say that f is negligible with respect to g near (. In other words, f tends to zero

faster than g as x — xg.

If lim fle) = 0, then we also have f = o(g).
=0 g()

Ve
(&

Equivalent Formulation

If g(x) does not vanish near zg, the definition above can equivalently be written as:

lim =2 = 0. (1.3)
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Examples

e z=o0(l)asz — 0.
e sin(x) = o(x) as z — 0.

o z°=o(x)asxz — 0.

Interpretation.

The notation f = o(g) expresses that f becomes insignificant compared to g near
a certain point. It provides a precise way to compare the rate at which functions

approach zero or infinity.

r
(&

1.1 Remarks and Definitions

If g does not vanish on D NV, the previous definition is equivalent to:

f=0(gy) = i; is bounded on DN V.

r
-

We say that f is equivalent to g in the neighborhood of zy (or when x — ) if there
exists a neighborhood V' of zy and a function € defined on D NV such that:

Vee DNV : f(z) = (1+¢e(x))g(x) and lim e(z) =0.

T—xTQ

We then say that f is equivalent to g near xy, and we write:

frg or fz)~g(x), == 0

e
(.

If the limit lim /() exists, the previous definition is equivalent to:
% ()
f~g < lim M =1.
T—xo g(x)

-
(.
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If the functions f and g depend on a parameter t € I, i.e. f = f(z,t) and g = g(z,1),

then the previous relations are said to be uniform if the function € and the constant

k are independent of ¢; otherwise, they are said to be non-uniform.

2. Examples

Let @« > 8 > 0. Consider the polynomial:
P(z) = aox® + a12°™ + - - - + a,2*T"

with ag # 0 and a,, # 0. We have the following relations:

(a.1) z* = o(z?) (b.1) P(z) =0O(z?) (c.1) P(x) ~p apx®
(a.2) z° = o(z®) (b.2) P(z) = O(2?) (c.2) P(z) ~oo ana”
(a.3) Inz = o(z") (b.3) sinz = O(1) (c.3) sinz ~px

(a.4) 2* = o(e") (b.4) sinhz = O(e”) (c4) sinhz ~ o 3€°

1. Let f(z,t) = €2 and g(z,t) = ¢ . Then f(z,t) = e(z)g(x,t) where
e(x) = 2" Since mh_}rgo e(z) = 0 and ¢ depends only on z, f(x,t) is uniformly

negligible with respect to g(x,t) near oco.

2. Let f(z,t) = 2* + 2t and g(x,t) = ot +2t*. Then f(z,t) = e(x,t)g(x, ) where
e(z,t) = % Since lin% g(z,t) =0 and & depends on ¢, f(z,t) is negligible with
T—
respect to g(z,t) near 0, but not uniformly.
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Proposition 1.1.1. (Links between order relations)
Let f,g and h be functions.
In the neighborhood of the point xq, we have:

1.
2.
3.
/.
5.
6.

7.

If f(x) = og(x)). then f(x) = O(g(x)). (the reverse is false)

If f(2) = o(h(x)) and g(x) = O(h(x), then f(x) + g(x) = o(h(x)).
If f(x) = Olg(x)) and g(x) = o(h(x)). then f(x) = o(h(x)).

If J(x) ~ g(x), then f(z) = g(x) + olg(x)).

If f(x) ~ g(x). then f(z) = O(g(x)) and g(z) = O(f(x)).

If f(2) ~ g(x) and g(x) = o(h(x)), then f(x) = olh(x)).

If f(x) = o(g(x)) and g(x) ~ h(x), then f(x) = o(h(x)).

Proposition 1.1.2. (operations with order relations).

Let f,g,h and k be functions, and let A and p two real numbers.

In the neighborhood of the point xq, we have:

1.

2.

3.

If f(x) = o{g(x)), then Af(x) = o(Ag(x)).

If f(2) = o(g(x)) and g(x) = o(h(x)), then Af(x) + pg(x) = o(h(x)).
If f(x) = o(g(x)) and h(z) = o(k(x), then f(x)h(z) = o(g(x)k(x)).
If f(2) = o(g(@)), then |f(2)]* = ollg(@)]*), a > 0.

Let x € D, if f(x) = o0(g(z)) and f and g are continuous on D, then

[ rwyde=of [lgtw)lar).

Let & €]a, B[ a parameter, and f(x,&) and g(z,§) two functions depend on the
parameter . If f(x, &) = o(g(x,&)) uniformly, then

" f e de = of [ lg(w.0)) de )
[ (/] oo

e The above properties are also valid for (O) and (~).

Proposition 1.1.3. .

Let f,g and h are functions verifying f(z) ~ g(x) (f and g nonzero in a neighborhood of

a point ), then,
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1. f(x)h(x) ~ g(x)h(x).
)

, ha) | hia)

f@) " gl
1@ _ o)
S h(x) h(x)

Remarks 1.1.1.
1. ]fxll)rgo f(z) =1, then f(x) ~1
2. f(x) ~ g(x) = lim f(x) = lim g(z).

3. f(z) ~ g(x) = sign(f(x)) = sign(g(z)) in a neighborhood of xy.

Proposition 1.1.4. .

Let f and g ions two functions verifying f(z) ~ g(x), and ¢ a function defined in a
neighborhood of a point b € R such that p(z) —a

Then,

fop(@)~gogp(a).

Remarks 1.1.2.

1. fi(z) = o(g1(x)) and fo(x) = o(ga(x)) do not imply that fi(z) + fo(x) = o(g1(x) +
92(7)).

2. f(x) =o(g(x)) does not imply that f'(x) = o(g'(x)).
e The two preceding remarks also apply to the relations O and ~.

3. Never write f(x) ~ 0

4. f(z) ~ g(x) does not imply that xlgrrmlo(f(x) —g(x)) =0.
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1.2 Asymptotic Sequences

Definition 1.2.1 (gauge functions). . Let (6,(z))nen be a sequence of functions defined
on D CR, and let xg € D. We say that (6,(x)), is an

textbfasymptotic sequence (or a sequence of gauge functions) in a neighborhood of xq if
YneN: d(x)=0(.(x)), = — x.

Remark 1.2.1. If §,11(x) = 0(0,(x)), then d,ik(x) = 0(d,(x)) for all k > 0.

Examples 1.2.1. 1. 0,(x) = (z—z0)", (5n(x)) oy U8 an asymplotic sequence near o.

2. dp(x) = et <6n(x))n€N is an asymptotic sequence near oo.

3. let g be a function defined on D C R such that lim g(z) =0, then §,(x) = (g(x))",

(5n(x))n€N s an asymptotic sequence near .

Remark 1.2.2. An asymptotic sequence is not necessarily convergent. Exemple: 0, =

1
Tr, x — 00

1
5 1 T+l —1
lim == = lim — = lim x»+) =0
1
but, lim d,(x) = lim z» = o0, i.e 0,,(x) divergent.
7 nSoo n( ) T—300 ¢ n( ) g

Theorem 1.2.1. FEvery subsequence of an asymptotic sequence is itself an asymptotic

sequence.

Proof. let a,, = 0y(n), where ¢ : N —>( : Nis an increasing function.
n—p(n

U1 (T) = Op(ny1) = 0(6¢(n+1)(x)) = 0((5@(,1) (x)) near xo. Because ¢ is increasing n+1 >

n= @(n+1) > pn). O

Theorem 1.2.2. Let (6,(z))nen be an asymptotic sequence near xq. If the functions 0, (x)

are integrable, then the sequence

su(e) = ([ oatlar)

s also asymptotic near xg.

Proof. Let
gul@) = [ 1fa(t)]dt

We will show that (g,(x))nen is an asymptotic sequence, i.e.,

VneN:  guii(@) = o(ga(x)).

8
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[]

gua(®) = [ fra®dr = [ o)t = o [ £(0)]dt) = olga(x).

Theorem 1.2.3. Let (0,(z,&))nen be a uniformly asymptotic sequence compared to the
parameter £ €|a, b[, in a neighborhood of x.

If the functions 6, (x,&) are integrable with respect to &, then the sequence
b
() = ( [ 1tz €) df)
a neN
is asymptotic in a neighborhood of xg.

Theorem 1.2.4. 1. If (6,(x))nen be an asymptotic sequence near xo, and o > 0, then

| 0,(x) | is also asymptotic near xy.

2. If (0,(2))nen and (Bn(x))nen are two equivalent sequences .
Vn, 6,(z) = O(Ba(x)) and B,(z) = O(0,(7)), Vo € V(x0).

if one is asymptotic, the other is also asymptotic near xo near .

Remark 1.2.3. The differentiations are not allowed.

0 () is asymptotic near xo # 0, (x) is asymptotic near xo. Exemple:

Definition 1.2.2 (1.17). Two sequences (fn(x))nen and (gn(x))nen are said to be equiv-

alent in a neighborhood of xq if
VneN: fo(z) ~gu(z) near x.

Theorem 1.2.5. Let (f,,(x))nen and (gn(x))nen be two equivalent sequences in a neighbor-
hood of xo. Then (f.(x))nen s asymptotic near xo if and only if (gn(T))nen s asymptotic

near To.

Proof. Assume that (f,,(x))nen is an asymptotic sequence near x, i.e.
VneN:  fon(z) = o(ful@)).

We show that (g, (x))nen is also asymptotic near x, i.e.
VneN:  gu(z) = o(ga(7)).

Indeed,

VneN:  gnn(r) = O(fur1(z)) = Oo(fn(z))) = o(fn(x)) = 0(O(gn(x))) = 0(gn(x)).

9
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Hence, (gn(x))nen is asymptotic near xy. The converse implication is proved in the same

way. O

1.3 Asymptotic Series

Definition 1.3.1 (1.19). The series

Z an fn()

n>0

is said to be asymptotic in a neighborhood of o if the sequence (fn(Z))nen is asymptotic
near T.

In this case, we have

> anfu() Zakfk: )+ o(fu(z)), VneN

n>0

Or equivalently,

> anful(@) Zakfk )+ O(fusr(z)), VneN.

n>0

Example 1.3.1 (1.20). 1. Power series are asymptotic series.

2. The series
Z 32n+1 Sin" T

n>0

15 an asymptotic series near 0.

10
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Asymptotic Expansion of Functions

2.1 Asymptotic Expansion

Generally, an asymptotic expansion has in commun with a TAylor expansion the fact
that it provides an approximation of a function, which is expressed as a sum of functions,
arranged from the "largest” to the "smalles”, together with a remainder term that is neg-
ligible compared with all the other trems in the sum. This is what is called a comparison
scale.

These functions can be of any nature, whereas a Taylor expansion contains only poly-

nominal terms.

Definition 2.1.1. Let f be a function defined on a subset D C R and let v € D. Let
(0;())ien be an asymptotic sequence in a neighborhood of xy.
We say that f admits an asymptotic expansion near xo with respect to the sequence

(0;(2))ien of order N if there exists a numerical sequence (a;);en such that

flz) — Z a;0;(x) = o(dn(x)). (2.1)
= O(far1(2)).

If relation (2.1) holds for all n > 0, we say that f is expandable in asymptotic series

with respect to the sequence (§;(x))ien in a neighborhood of xq, and we write

f(x) o > aidi(x).

>0

Remark 2.1.1. The Taylor expansion near xq is an asymptotic expansion; it suffices to
take 6, (x) = (x — xzo)".

Example 2.1.1. Near 0, we have

11
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If we take t = sinx, then

=> (=1)"(sinz)"

1+sinz 50

On
Since the sequence (6,,(x))neny = (SIN" T)nen s asymptotic near 0, Indeed, lir% +E(9)U) =
T— n T
sin™ Tt

lim — = lim sinz = 0.
z—0 sn" z—0

It follows that
1

g(a:) - 1+sinx

is expandable near 0 in asymptotic series with respect to the sequence (0,(r))pen =
(sin” &) pen.

Theorem 2.1.1. The asymptotic expansion with respect to an asymptotic sequence (8;(x))nen
of a given function f(x) if it exists it is unique.
In other words: The coefficients of the asymptotic expansion of a function f(x) with

respect to an asymptotic sequence (0;(x));en are unique.

Proof. Assume that

n n

(@) = aidi(x) + 0(0,(x)) =D bid;(x) + o(dsn(z)).
i=0 i=0
For n = 0 we have ay = lim f(z) and by = lim f(z) . From the uniqueness of the limit

T—x0 50(3;) 0 50(_17)
we find ag = by.

Assume that the property is true up to order n, i.e. a; = b;, Vi = 0,n. We have for n + 1

flz) = 2N, aidi(x) f(x) = 3o bidi(x)

Ap41 = lim = lim = b1
+1 = e 5n+1(x) T—x0 5n+1(1~) +1
So a; = b;Vi > 0, hence the uniqueness of the coefficients. n

Definition 2.1.2. we say that f(x) and g(x) are asymptotically equal (equivalent) in
the neighborhood of xoy with respect to the asymptotic sequence (0;(x))ien if f(x) and
g(x) admit the same asymptotic expansion in the neighborhood of xoy with respect to the

asymptotic sequence (0;(x));en. That is to say

f(z) —g(x) = 0(0;(x)), x — xp, Vi =1,2, ...

Proposition 2.1.1 (Operations on the asymptotic expansion). Let (6;(2));en be an
asymptotic sequence in a neighborhood of xq, and let f and g be two functions defined on
D such that

Zazz and g(x Zbé

z>0 ’L>0

12
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Then the following properties hold:

1. If a, B € R such that («, 5) # (0,0), then

af (@) + Bg(x) o2 Y (0a; + Bbi)6i(x).

>0

f(z).g(z) ~ (go a:6;(x) ) (D bidi(x) ).

>0

~ a1b151-2(x) + ...

o

3. If the functions f(x) and 6;(x) are integrable, then

/roﬂt)dt%;]ai/wodi(t)dt

Proof. .
(1) We have
o L aa) = f) = 3 audila) + 0l (0).
and .
~zo Z,;bndn(x) — g(r) = 2_: brok(z) + 0(dn()).
Hence,
af(z)+ Bg(x Zi: apor(x Z b0k ( on(z))
Zi: ak + bk 5k ) + 0(5n($))
Thus,
f(@) 4+ g(x) ~u X:O(an + b,)0n ().
(2) From

~n 3 anba(z) = flx) = éam(x)w@(m»,

n>0

13
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we have
Ljf@ﬁﬁ:iéj(é;amh@)+00%@»>cﬁ::é;aklzéﬂﬂdt+o<éj&xﬂdo.
Hence,
/ t)dt ~g, Z an /

n>0

Proposition 2.1.2. Let

t) ~i 0 Z a;(x)o;(t

n>0
uniformly for t € [a,b).
o [f the functions f(xz,t) and 6;(t) are integrable with respect to t, then

/Otf(f,t) d€ ~gy D ai(t) /Ot 5;(€) de.

>0

elikewise, if the functions f(x,t) and a;(x) are integrable with respect to x, then

[z t)de ~y > x) dxd;(z
[ [

>0

Remark 2.1.2. Differentiation is not allowed:

f(x,t) ~z Zai(t)éi(x) + af(ax{t) ~z0 Zaé(t)&-(m)

1>0 1>0

Theorem 2.1.2. If f(x,t) ~¢ Y a;(x)d;(t) and if

1>0

W S b

>0

Then,

2.2 Calculation of the coefficients of an asymptotic

expansion

Let (6;(z))sen be a sequence asymptotique, let f(x) be a function defined on D, xy € D.

let’s suppose that f(z) admits an asymptotic expansion xy with respect to the 6;(x),

14
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r — Xg.

flz) = zn:aiéi(x) +0(0,(x)), VneN.

We divide both sides by do(x). (We always assume that the limits exist).

we find
@) e olh@) | (J@) B olf)
do@) T ) T () T J}%O(%(I) o) T () )
_ f(z)
= 5y
A o)
Sl.nce g}LrgO 50(2) =0,2>1 dxlﬁr0 ()
Likewise,
F@) —agbo(r) L la) | olful@) ([ f() — aodo(a)
5:(2) =a + 251(1:)+"‘+ 51(2) = a 3%9&0( 51 () )

and by recurrence,

ap = lim f(x) , and a,, = lim
0 (50(1’) T—xQ

fl@) — X0 aidi(x)
( 5. (x) )’V”ZI

By induction, we can show that

f(x) = 302 ar fu(®)

T—T0 fn (ZE) ’

Vn € N.

Example 2.2.1. Let

fw) = 5111113 (1 a emx— 1) '

We will develop the asymptotic expansion of f(x) with respect to the sequence (x") near
0.

o (0p)n = (z™), is an asymptotique sequence:

5n+1 xn+1

lim —— = lim = lim z = 0.
T—T0 n r—xo N T—T(

15
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Calculation of ag:

aozlimf(x):lim L (1—61:‘% >

z—0 ]}O z—0 sin -1
) z (1 1 ) 1 1
= lim — (— )zhm(— )
z=0siny \z e¥ —1 =0\ e¥ —1
ef—x—1 . e —1 . er 1

= lim im » lim .
z—0 :L‘(ex — 1) (L’Hopital’s rule) x—0 (I + ].)Gm — 1 (L’Hopital’s rule) z—0 (ZE + 2)€x 2

1

Hence, ag = 5.

Calculation of a;:

alzlimf(w)_;:lim( ! (1— v >_1>
z—0 T z—0 \zrsinx et —1 2z

) T 1 1 1 ) 1 1 1
= lim | — - |- — | =lim| 5 - —— - —
z—=0 \sinz \ 22  x(e® —1) 2z =0\ 22 z(e*—1) 2z

. 2—x)e*—2—x . (1—x)e* —1
= lim im
z—0 2z%e* — 222 (L’Hopital’s rule) —0 (2I2 + 4[17)6”7: —4x
—ze” . (—1—x)e” 1

lim im = ——,
(L’Hopital’s rule) ©—0 (2332 + 8 + 4)690 — 4 (L’Hopital’s rule) x—0 (21‘2 + 122 + 12)630 12

Therefore,

L (1--* ):1—x+4@.

sin x et —1 2 12

2.3 The method of integration by Parts to obtain an

asymptotic expansion

Let v and v be two functions of class C* on [a,b] C R. The formula of integration by

parts is given by

Z—L%@u@ﬁ. (2.2)

f) = [ gty

We shall apply formula (2.2) to f in order to obtain an asymptotic expansion of f.

Example 2.3.1. Let the function f be defined on |0, +oo[ by

400 eft
J(@) = /0 T+t d.

We shall use the method of integration by parts to obtain an asymptotic expansion of f

16
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near 400 with respect to the sequence (6, (x))n = (27")n.
1
Let u/'(t) = e and v(t) = ——. Then
T+t

+o0 oo et 1 oo et
B
0 o (z+1)? r Jo  (z+41t)?

By repeating integration by parts three times, we obtain

J(@) = [_ xe+tt

1 1 2 +oo et
— S+ -2 dt.
/(@) r a? * x3 5 o (x+1t)

By induction, one shows that

—t

+ (—1)"n! /O+Oo< ¢

—1)F 1k —1)! "
4ttt

xk

-
fla)=>_
k=1
It is clear that the sequence (6,(x)), = (z™"), is asymptotic near +oo. Indeed,

6n+1(x)_ . x" RRT 1_
M5 Gy T s = m o =0

It remains to verify that

We have
+oo eft 1 + 1
()] = dt| < / ~tdt =
| B ()] /0 (@ + o) | = et g € R
Hence,
Rn(x)| 1 (1
o | R < = 20 = R =o( ).
Therefore,

- [ e G0

n
T+t w1 T

2.4 Expansion of an Inverse Function

Recall that the inverse of a function f is a function f~' such that

17
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at least on part of the domain.
For a function such as f(z) = 2 + =, it is difficult to find an explicit formula for

(). However, we can find the asymptotic series of f~(z) as x — oo.

Example 2.4.1. Find the first three terms of the inverse of the function
flx) =2+

as x — 00.
Solution: Since x> + & ~ 2° when x — oo, it is natural to assume that the inverse
function behaves like </x as x — oco. But what will be the next term of the series?

The idea is to extract this leading term by writing

@) = Vo + g(w),

with g(z) = o(/z) and to seek an asymptotic approximation of g(x).

Since we know that f(f '(x)) = x, we have

(V +g(2)* + Vo + g(z) = .

That is,
 + 3g(x)Va? + 3% () ¥z + g*(x) + Vo + g(z) = .

Using the fact that g(x) = o(5/x), it is not necessary to keep the terms containing the

square (or higher powers) of the unknown function. Hence,
v+ 3g(x)Va? + o g(x)Va?) + Vo + g(x) = z.

By eliminating the terms that are known to be smaller, we obtain

3g(a)Vat ~ 5 > gla)~

We now have the first two terms of the asymptotic series:

1

_ 5 1
f 1(:E)N\/E_§3x

as r — Q.

To find the next term of the series, we repeat the process, assuming that

e = v - i)

18
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Expanding, we obtain

(73 (- oo

1 2 3 b .
Y 2 ) Y- bi(a) = o

39 39T

Any term involving h%(z) is negligibly small, so we can write
2

(%—é%)l%%—é%) h(x)+o(€/ﬁh(x))+\/_—f hz) = .

It is clear that the largest term containing h(x) is 3v/a2h(z). Thus,

(1’—\/——1— >+3\/_h( +€/E—;\:’/§+o(€’/§h(x)):x

39z 2Tx

Simplifying,

]- 3 2 3 2
7 = 3V/2%h(x) + o(Va2h(z)),

which means

3V/22h(z) ~ Q;x

Hence,

Therefore, we obtain

11 1
1 -

Let’s recap the steps that were used

1. Determine the first term of the asymptotic series. This can often be done using

simple approximations.

2. Add an unknown function to the series obtained so far. Assume this function is

smaller than the previous term.

3. Substitute this series into the equation that the function must satisfy.
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I. Boutana Asymptotic Analysis

4. Expand this equation carefully in an asymptotic manner, cancelling terms as much

as possible.

5. The remaining terms should yield an equation for the unknown function, which is

now easy to solve. This provides the next term of the series.

6. Repeat steps (2-5) to obtain additional terms in the series.

2.5 Expansion of an Implicit Function

Sometimes, it is easy to determine the asymptotic series for the solution of an equation
y = f(x), but it generally becomes a problem when the equation is of the form f(x,y) = 0.

If there are three or more terms in an equation f(z,y) = 0, usually two of the terms
dominate the others. Therefore, we can form an asymptotic equation using only the two
dominant terms. Such equations are usually very easy to solve.

The problem, of course, lies in determining which two terms are dominant. This can
only be established through trial and error. In each case, we must verify whether the

other terms are indeed small compared to those assumed to be dominant.

Example 2.5.1. Find the behavior of the function defined implicitly by
P 4ry—y =0 as = — +oo.

solution: Since there are three nonzero terms, there are three possible pairs of terms.
First choice: Suppose 3° is smaller when z — 400, i.e. ¥* = o(zy) and y* = o(z?).

Then we have
P raytolry) =0 = 2*~-2y = Y~ —IT.

But then y* ~ —2* # o(2?). Contradiction.

2 is smaller. Then we have

Second choice: Suppose x
vy -y tolry) =0 = Y~y = y~ /1

But then 2y ~ £2%? = o(2?) = xy = o(2?). Contradiction.

Third choice: Suppose xy is smaller. Then we have
=yt toa?)=0 = yP~22 = y~3

In this case, zy ~ 2/ = o(2%) = xy = o(z?), which proves that the choice is valid.
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I. Boutana Asymptotic Analysis

e To find the next term in the series, we set y = 22/® 4 g(z) with g(z) = o(z*?). Then
we have
2+ x(2? 4 g(x)) = (2% + g(2))*
— 2? + 253 fag(x) = 2® + 323g(x) + o(z3g(x))
— 27 4 zg(x) = 32*3g(z) + o(z*3g(z))
s 2P = 399 a) + ofa"g(a)
4/3

= 23 ~ 3243 (x)

Thus,
1/3
y~x2/3+% as z — +oo.

Let’s recap the steps that were used in this method.
1. Guess which terms may be negligible.
2. Eliminate those terms to form a simpler equation and solve it exactly.

3. Check that the solution is consistent with step 1. If not, try eliminating different

terms.
4. Determine the next term to verify that the leading behavior is correct.

5. Verify all other possible pairs of dominant terms, since more than one solution may

exist.
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Chaptere 3

Asymptotic study of functions
defined by integrals

3.1 Introduction

In this chapter, we study the asymptotic behavior of certain parametric integrals.

We have already seen that integration by parts is a way to find the asymptotic ap-
proximations of integrals, but its application is limited.

An important class of integrals that, under certain conditions, lends itself to this

method of integration by parts belongs to the class of Laplace integrals of the forme
I(z) = / F(t) et dt. (3.1)
0

3.1.1 Watson’s lemma

We begin with Watson’s lemma, which provides an asymptotic expansion for Laplace

type inegrals of the first kind.

Theorem 3.1.1 (Watson’s lemma). .

Let f be a fonction of a real variable t with complex values, satisfying

1. f is continues on the interval [0, o0].

2. f admits an asymptotic expansion

f) ~ > apt™, t — 0"
k=0

3. For a certain fized ¢ > 0
ft) =0(e), t = +o0,

Then,
o0 _ ad F()\k + 1)
xt z :
/0 f(t) ¢ at n:oo o P ATl
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I. Boutana Asymptotic Analysis

Proof. By conditions (1, 2 and 3), the integral converges for x > ¢. (we can integrate
term by term).
According to (3)

Recall

/ e Vytdy =T(\, +1).
0

Special case
I(z) = / e~ 19 g(1) dt,
0
and ¢(t) has a Taylor expansion in the neighborhood of 0

(n)

n=>"1

n=0

we apply Watson’s theorem

=3 90
_y 9" (0)

tn+a
' .
n—0 n:

0)T'(n+a+1)
SO ] n—>oo Z xntatl

Example 3.1.1. Consider the function I defined on R™ by

/2 5
I(x) :/ el gy,
0

1
2vt(1 + 1) at

With the change of variable t = tan® 0 we have 6 = arctan v/t, df =

le) = /0 NGED

and

1
2V/E(1 + )

f is continues on 0, oo[ and we have in the neighborhood of 0,

11 o (—1)k

t) = N
1) 2Vt (1+1) 2\/E Z ,;)

M. e [ 1
oreover, ft / —_—
/0 al 0 2Vt(1+1)

with a;, = 2(—1)".

Let’s pose f(t) =

1
th=z,

dt = arctan(v/1)|7> = g < 400.

)
So, f Zakt %

k>0
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I. Boutana Asymptotic Analysis

Applying Watson’s lemma gives

miak ke d) 8 DT D) VA e VA

1 x + P
+2 k=0 23;k+§

- 2 4
= T

3.2 Laplace method

Let I = [a,b] be a real interval (finite or infinite), = a large positive parameter and f
and g be two functions defined and continuous on 1.

Let us consider the integral ,
/ F(1)em?® dt. (3.2)

To give an asymptotic expansion of the integral I(z), we can apply Watson’s lemma, we

make the change of variable: u = —p(t), so, t = ¢~ '(—u), and du = ¢'(t)dt. if ¢’ # 0,

dt = _d—u‘ Then,

' (o~ (—u))

0 flpT (~u) o
B /w(a) P (—u)* .

But if ¢’ is zero, we cannot apply Watson’s lemma and we need Laplace’s method

Theorem 3.2.1 (Laplace’s Theorem). Let I = [a,b] be a real interval (finite or infinite),
(or (—00,4+00)) be an interval of R. Let f and ¢ be two functions defined on I such that
f is continuous on I and pC*(I,R). Assume that:

1. / (t)| dt < oo for all z > 0;

2. ¢ wanishes at a single point to € I (©'(tg)) = 0 and g"(to) < 0;

t a strict absolute maximum point of ¢
f(to) # 0.
Then, as x — 400,

27

[ e g wp(to)
I(z) .—/af(t)e Vit f)e
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I. Boutana Asymptotic Analysis

Proof. By Taylor’s integral formula applied to g about t;, we have

olt) = glto) + 2" 0)(t — t0)* + LI "0 )2 gt e 1)

2! (3.3)
= g(to) + (t — t0)* 0(2),

where
1

0(t) = Lg"(t) + L(t — to) /0 (1 — u)2g® (to + ult — to)) du.

Let J = [to — a,to + a] C I be a small neighborhood of ¢y and set K = I\ J. Then
L(z) = / F()e™D qt +/ f)e™ W dt =: L;(z) + L (x).
J K
We study L first. From (3.3 we get
Ly(z) = e*9(to) / £) e (t=t0)0(0) 1y
() = e [ faye

Perform the change of variable v = (t — tg)v/z, i.e.

v

ﬁ’

t=ty+

to obtain
e9(to)

L;(z) = 7 /Z h(v,z) dv,

where 8 = a+/x and

h(v,x) = f(to + \;%) exp<v2 0<t0 + \;%))

Since 0(t) — 19" (to) as t — to, for fixed v and large = we have

h(v,z) — f(to) exp(ég”(zﬁo) vz).

Hence, by dominated convergence (justified by the integrability hypothesis and choice of

J),
2

9" (to)|

/_Z h(v,z)dv ~ f(to) /_O:o eXp(;g”@O) U2> =)

N 2g(to) [ 27
LJ(x) f(tO)e g T |g”(t0)| .

The contribution Lk (z) from the complement is exponentially smaller and does not affect

Therefore

the leading term; this concludes the proof. O]
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I. Boutana Asymptotic Analysis

to + %:
‘h(to,x)‘ S e(ffa(to)+77)2 Sup [ f] S 12gg(t0> + 77, V'U € [_/8,6]
l<Bltol L o

Donc

|h(to, )| < Ot +m* g lto + ﬁ} _ 00l
l<Bltol L o

h est dominAle par une fonction positive, intAlgrable et ind Alpendante de . DéAZaprAiS

le thAIorAlme de continuitAl sous le signe intAlgral, on obtient :

“+oo +o0 v2

h(to) dv = f(to)/ e 29" du.

—00

B
lim h(ty,x) dv = /

z—+oo J_p3 — 00

g(t) — g(to)

Et comme 0(t) = —
—to

< 0 car g(tp) est le maximum de g, donc

B too 42 o
h(te, z) dv “255° #(¢ / ="Go) dv = flto)y] ———.
[ o) o 5 fo) [T do = ft0)y |~

- [ 27
Ll(x) ~r—4o0 f(to)e glto) m-
ATlitude de Ly

D’aprAls ce qui prAlcAlde,

DaAZoAz

Ly (x) —agto). | 79" (t0) /
~ * _ t zg(t) dt. 2

Donc, pour prouver que Ly (z) = o(L;(x)), il suffit de prouver que le cAttAl droit de
(3.2) tend vers 0.

Ona:
g(t) <glto) = F=>0:g(t) <glty) —e.
Donc
zg(t) = g(t) + (x — 1)g(t) < g(to) + (z — 1)(g(to) —€).
Alors

—zg(to) z9(t) Jt| < o—79(to) 9(to) o (z—1)(g(to)—¢)
e Vo [ ft)eWdt| <e Vo | [f(t)|ed)e dt.
K K

= Vae =D [ |p)er .
K
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< My/xe ™ — 0.

Donc

f~g, hi=o(g)=f+h~g.

3.3 Method of stationary phase(Fourier method)

This method is a derivative of Laplace’s method; it allows us to study the behavior of

integrals of the following form:
b )
I@z/f@ﬁwhﬁx%+mW—m) (3.4)

we will assume that f has compact support in Ja, b[. (supp(f) = {x € X : f(x) # 0})
The function f(¢) is said the amplitude.

©(t): is referred to as the phase, and if its derivative is zero, it is said to be stationary.
Note: The behavior of the integral I is approximated by its contributions near the
endpoints of integration and near the points where the phase () is stationary, that is,
points for which the first derivative of ¢ is zero, or more generally, points where the first
k — 1 derivatives are non-zero and the k'™ derivative is zero.

We first note that [ is finite.

Indeed,

. b A
[ e a < [ e ar
b
<[5 dt < o

(because f has a compact support).

the asymptotic behavior of I determined by the points satisfying ¢'(t) = 0. two cases are
distinguished:

¢’ not equal to zero on the supp(f): stationary phase phase.

¢ equal to zero on the supp(f): unstationary phase phase.

Theorem 3.3.1 (Stationary phase, compact support case). Let f and g be C* functions
on the interval [a,b]. Assume that f has compact support with supp(f) C |a,b], and that
g has no critical points on supp(f) (i.e. ¢'(t) # 0 for all t € supp(f)). Define

F@:LH@wwﬁ.
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Then for every integer n > 0,
F(z)=0(z™") (x — o00).

Proof. Since ¢'(t) # 0 on supp(f) we may write

1
ixg'(t)

ei.tg(t) _

(eizg(t)) )

S

Hence

Flz) = 1/: f(®) i(eimg(t)) gt

iz Ja ¢'(t)dt
Integration by parts gives

Fla) = 2 [f(t)eixg(t)r 1 b<f(t)>/emg(t> i@

i [g(t) ir Ja \g'(t)

a

The boundary term vanishes because f has compact support, and therefore

1 b )
Fla) =~ / Fi(t) €90 gy

fl(t):_1‘<f(t)>"

i \g'(t)

Since f; is again C°° with compact support we may repeat the integration by parts. By

where we set

induction one obtains for every n € N

1 b .
F(a) = — [ falty = dr,

where f,, is a C° function with compact support depending on f and g. Consequently

there exists a constant M (depending on n) such that

‘JJ”F(I)‘ =

/b £alt) 19 (t) dt‘ < /b |fu(t)|dt = M,

which yields F(z) = O(z™") as x — oo for every n. O

28



I. Boutana Asymptotic Analysis

Remark 3.3.1. In the previous theorem, if one of the integration endpoints is infinite
(that is, a = —o0 or b = +00), the condition “f has compact support included in [a,b]”

should be replaced as appropriate, by

1. if a = —oo: Supp(f) =] — 00, c[C] — 00, b and tLiEnoof(t) =0.

2. if b= 4o00: Supp(f) =|c, +00[Cla, +oo[ and Jim = 0.

—+00

3. if a = —o00, and b = +o00: tgr_noof(t) = tggrnoof(t) = 0.

Remark 3.3.2. If ¢/(t) # 0 near the endpoints of a, that is, if there are no critical
points, then the resultis modified. The terms from the bracket of integration by parts must
be added to it.

Example 3.3.1. ,
I(z) :/ et dt x — +oo

fit)=1,9(t)=t, ¢'t) =1 #0.

b ixt ixb _ ixa
/é%ﬁzr.lze.ezomﬂ (x = ).

1 1

3.4 Stationary Phase Method

Theorem 3.4.1. Let f € C°([a,b]), ¢ € C°([a,b]).
Assume that f has compact support contained in [a,b], and that ¢ has a unique critical

point to € supp(f), and that this point is not degenerate. (i.e 3t. € supp(f), ¢'(t.) =0,

and ¢"(t.) #0).
Then, as x — 400,

b , . . p 2m
I(z) :/ f(t)ezw(t) dt ~ f(tc)ezw(to)ew/4(sgmp (te)) 7
a V& | (t)]

where s = sgn(¢”(t.)) € {£1}.

Proof. Using Taylor’s formula around ¢y, we write
o(0) = glto) + (1= 100(0), (1) = 5"(t0),
Let I = [ty — a,to + a] be a neighbourhood of ¢, and set K = [a,b] \ I. Then,
F(z) = /1 F(H)ei 9 gt + /K F(£)e 90 qt = Fy(z) + Fi(z).
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From Theorem 3.7, one has F(x) = O(xz™") for every n, so it suffices to analyse F}(x).
Make the change of variables v = (t — to)y/x. Then

) 1 B )
Fi(z) = emg(to)ﬁ /6 h(v, ) ¥ 0ot/ gy

where 5 = a+/x and

v

NG

Since h(v, z) is uniformly bounded, by continuity under the integral sign we obtain

h(v, ) = f(to n ) exp(iv*(B(to + v/V/E) — (1))

li )2 —izg(to) — f(t isw/4 T )
Jm, Filw)em Ve = flto) ™ fa s,
1
Substituting 6(ty) = 3 g"(to) yields the stated asymptotic formula. O

Remark 3.4.1. If the stationary point ty lies at an endpoint a or b, the result must be

divided by 2. If several stationary points occur, their contributions add.

Example: the Airy function

The Airy function is defined by

1 [t
Ai(x) / e @tH/3) gy

")

As © — +o00, make the substitution t = uy/z, giving
Ai(z) = \2/5 T g ) gy,
T J—o0

3
Let g(u) = u + % Then ¢'(u) = 1+ u* # 0, and

1 +o0 1 L .
Ai(z) = / (6”5/2(””3/3))/ du.

27z Jooo g'(u)

This yields the classical asymptotic behaviour:

1
Ai(z) ~ —= 2~ 1/* e=57"?, x — +o0.

Ve
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Asymptotic Analysis of the Airy Integral

We note that
1

g'(u)  1+u?

fi(u) =

By integration by parts, we obtain

1 +oo 2 )
Ai(z) = 5— / e e 3 gy |
2mix /-0 (1 +u?)?

Observe that

. 2u

By Theorem 3.7,

+oo 2u ix3/2(u+u3/3) . 1

Hence, . . .

Asymptotics as y - —o0

Let y = —z, and perform the substitution ¢ = u./y. Then

Ai(y) = Y [T s gy,

21 —00

Set g(u) = —u +u®/3. Then
Jw=uv~1,  ¢"(u)=2u,

so g has two critical points at u = +1.

Let € > 0 sufficiently small. Decompose the integral as
+o00 1—e 1+e 1+e +o0
[ L L+
1+e l1—¢ 1+e

Ai(y) = Li(y) + L(y) + Is(y) + Lu(y) + I5(y).

Thus,

By integration by parts (see the asymptotics as © — +00), we obtain

1

Lily) = o<y) . k=1,35.
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Asymptotics of I5(y)
We apply Theorem 3.10. Let f(u) = 1 and g(u) = —u + u*/3. Then

Jw=v-1 g¢"(u)=2u
On the interval [—1 — ¢, —1 4 ¢], we have
gdu)=0 < u=uy=—1.
B
We set f(u) =1 and g(u) = —u + 5 50 that

g (u) =u* —1, g"(u) = 2u.

On the interval [—1 — &, —1 + €], the equation ¢'(u) = 0 is equivalent to

uU=1uy=—1
We note that
1 1
Fi(w) = g'(u) 142

By integrating by parts, we obtain

Ai(z) = ! / L e gy L / T2 e gy,
2miz J-o (14 u?)? 2mix J—oo (14 u?)?

We observe that

i 2u
u1—1>r:£loo (1 + u2>2 =0,

hence, by Theorem 3.7,

/+oo 2u 6x3/2(—u+u3/3) du = O(1> Vn € N.
—oo (14 u?)? xsn )’

Thus,

1 |
Aiw) =~ 0(—) =0(5 ), WeN

2) Asymptotic equivalence as © — —o0

Setting y = —z and applying the change of variables ¢t = u,/y, we obtain

“+o0o
Ai(y) = \2/3 N ev” (et 3) gy,
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3
Let g(u) = —u+ % Then ¢'(u) = u*> — 1, and g admits two critical points at u = 1.

Let € > 0 sufficiently small. We decompose the integral as
+o0 —1—¢ —1+e¢ l—¢ 1+e +00
[
—00 —00 —1—¢ —1+4e¢ 1—¢ 1+e

Ai(y) = Li(y) + L(y) + Is(y) + Lu(y) + Is(y).

Hence,

By an integration by parts argument (see the equivalence near +00),

Li(y) = 0<1> . k=1,3,5.

Y

Asymptotic form of Ir(y)

We apply Theorem 3.10.
3
Let f(u) =1 and g(u) = —u + %, so that

J(u) =u? —1, g"(u) = 2u.
On the interval [—1 — e, —1 4 ¢], the equation ¢'(u) = 0 is equivalent to

u=1ug = —1.
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Disturbance problem
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Conclusion General

Ce cours a couvert les aspects fondamentaux de I’analyse mathAlmatique avancAle.
Les concepts prAlIsentAls constituent la base pour des Altudes plus approfondies en anal-
yse fonctionnelle, Alquations aux dAlrivAles partielles, et autres domaines des mathAl-

matiques pures et appliquAles.

Perspectives Futures

Les Altudiants intAlressAls sont encouragAls A& explorer les domaines suivants:
e Analyse ..........

e ThAlJorie des opAlrateurs

e Alquations aux ................

e Analyse ......ccccceeenn.
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