

# Info 3

# Introduction to MATLAB®

2nd year Engineer  
University of Jijel

M.Bouzenita

## Homework 2 (Solution)

### 1. MATLAB code

```
%%%% Homework 2 solution (2025/2026)
clear;
clc;
%% Task 1: Vector manipulation %%
disp('Task 1: Vector manipulation')
% 1.Create a raw vector V1 containing the first 10 odd numbers greater than 6.
disp('Vector V1 containing the first 5 even numbers greater than 10.');
V1 = 12:2:20

%2.Create another vector V2 containing the reminders of dividing the elements of V1 by 2.
disp('vector V2 containing the reminders of dividing the elements of V1 by 2 :');
V2 = mod(V1,2)

% 3.Calculate and display:
% a. The difference between the roots of the elements in V1 and V2.
disp('The difference between the roots of the elements in V1 and V2 :')
diff_root_V1V2 = sqrt(V1) - sqrt(V2)
% b. The root of each element at an even position in V1.
disp('The root of each element at an even position in V1 :');
V1_square_even_pos = sqrt(V1(2:2:end))

%% Task 2: Matrix construction
disp('Task 2: Matrix construction')
% a. Construct a 5-by-4 matrix A where: A(i,j)=i^2-2j
disp('A 5-by-4 matrix A where A(i,j)=2i^2-j :')
A = zeros(5,4);
for i = 1:5
    for j = 1:4
        A(i,j) = 2*i^2-j;
    end
end
A

% 2. Extract and display
% a.The first column of the matrix A.
disp('The first column of the matrix A :');
first_co_A = A(:,1)

% b.The matrix containing the elements indicated in the figure.
disp('The matrix containing the elements indicated in the figure :')
```

```

subA = A([2,4],2:4)

% c.Replace the indicated elements with their sinus.
disp('Replacing the indicated elements with their sinus :');
A([2,4],2:4)= sin(A([2,4],2:4))

% Other solution
% A(2,2:4) = sin(A(2,2:4));
% A(4,2:4) = sin(A(4,2:4));
A

%% Task 3: Application
disp('Task 3: Application')
% matrix G containing the scores of five students (rows) in four subjects (columns).
G =[15 11 13 9; 18 14 16 17; 8 11 9 7; 16 10 15 12; 15 16 12 14]

% 1. Compute and display:

% a. The average score of each student.
disp('b. The average score of each student :')
average_student = mean(G,2)
% b. The average score of each subject.
disp('a. The average score of each subject : ')
average_subject = mean(G,1)
% c. The student having the lowest average score.
disp('c. The student having the lowest average score :')
[lowest_score, student_number ] = min(average_student)

% 2. Normalize the G matrix such that all values are between 0 and 1
% and display the new matrix
G_min = min(min(G)) % G_min = min(G(:))
G_max = max(max(G)) % G_max = max(G(:))
% General nomalisation
G_normalisd0 = (G - G_min)/(G_max - G_min)

% In our case the data represents students scors, so the min and the max
% values are 0 and 20 respectively.
G_normalisd = (G - 0)/(20 - 0)

```

## 2. Code execution (Results)

Task 1: Vector manipulation

Vector V1 containing the first 5 even numbers greater than 10.

```

V1 =
12     14     16     18     20

vector V2 containing the reminders of dividing the elements of V1 by 2 :

V2 =
0     0     0     0     0

```

The difference between the roots of the elements in V1 and V2 :

```

diff_root_V1V2 =

```

```
3.4641    3.7417    4.0000    4.2426    4.4721
```

The root of each element at an even position in V1 :

```
V1_square_even_pos =
```

```
3.7417    4.2426
```

Task 2: Matrix construction

A 5-by-4 matrix A where  $A(i,j) = 2i^2 - j$  :

```
A =
```

|    |    |    |    |
|----|----|----|----|
| 1  | 0  | -1 | -2 |
| 7  | 6  | 5  | 4  |
| 17 | 16 | 15 | 14 |
| 31 | 30 | 29 | 28 |
| 49 | 48 | 47 | 46 |

The first column of the matrix A :

```
first_co_A =
```

|    |
|----|
| 1  |
| 7  |
| 17 |
| 31 |
| 49 |

The matrix containing the elements indicated in the figure :

```
subA =
```

|    |    |    |
|----|----|----|
| 6  | 5  | 4  |
| 30 | 29 | 28 |

Replacing the indicated elements with their sinus :

```
A =
```

|         |         |         |         |
|---------|---------|---------|---------|
| 1.0000  | 0       | -1.0000 | -2.0000 |
| 7.0000  | -0.2794 | -0.9589 | -0.7568 |
| 17.0000 | 16.0000 | 15.0000 | 14.0000 |
| 31.0000 | -0.9880 | -0.6636 | 0.2709  |
| 49.0000 | 48.0000 | 47.0000 | 46.0000 |

```
A =
```

|         |         |         |         |
|---------|---------|---------|---------|
| 1.0000  | 0       | -1.0000 | -2.0000 |
| 7.0000  | -0.2794 | -0.9589 | -0.7568 |
| 17.0000 | 16.0000 | 15.0000 | 14.0000 |
| 31.0000 | -0.9880 | -0.6636 | 0.2709  |
| 49.0000 | 48.0000 | 47.0000 | 46.0000 |

Task 3: Application

```
G =
```

|    |    |    |    |
|----|----|----|----|
| 15 | 11 | 13 | 9  |
| 18 | 14 | 16 | 17 |
| 8  | 11 | 9  | 7  |
| 16 | 10 | 15 | 12 |
| 15 | 16 | 12 | 14 |

b. The average score of each student :

```

average_student =
12.0000
16.2500
8.7500
13.2500
14.2500

a. The average score of each subject :

average_subject =
14.4000 12.4000 13.0000 11.8000

c. The student having the lowest average score :

lowest_score =
8.7500

student_number =
3

G_min =
7

G_max =
18

G_normalisd0 =
0.7273 0.3636 0.5455 0.1818
1.0000 0.6364 0.8182 0.9091
0.0909 0.3636 0.1818 0
0.8182 0.2727 0.7273 0.4545
0.7273 0.8182 0.4545 0.6364

G_normalisd =
0.7500 0.5500 0.6500 0.4500
0.9000 0.7000 0.8000 0.8500
0.4000 0.5500 0.4500 0.3500
0.8000 0.5000 0.7500 0.6000
0.7500 0.8000 0.6000 0.7000

```