Chapitre 2

Tenseur des contraintes

L¢lasticité s’intéresse principalement a ’étude des déplacements, des déformations
et des contraintes générés dans les matériaux solides soumis a des sollicitations
externes dans un domaine dit élastique. Dans ce domaine, le matériau déformé sous

Peffet d’un effort externe reprend sa forme initiale une fois cet effort annulé.
1. Coupure, facette et vecteur contrainte
1.1. Coupure

L’application de sollicitations mécaniques sur un solide génere des efforts internes.
Ces efforts équilibrent les sollicitations appliquées sur la frontiere extérieure du solide
et assurent ainsi la conservation de I'intégrité du matériau. L’approche de la coupe

fictive permet de déterminer ces efforts internes.

Considérons donc un solide occupant un domaine (D). En chaque point M de ce
solide, il existe des forces internes que l'on peut déterminer en effectuant une

coupure du solide, par une surface S, en deux parties A et B.

La partie A est en équilibre sous Iaction des forces externes qui lui sont appliquées

et des forces internes réparties sur la coupure.

Soit dS un élément infinitésimal de la surface S autour su pont M. Le vecteur unitaire
1, perpendiculaire en M 4 § et dirigé vers Iextérieur de la partie A est appelé facette
en M.

1.2. Vecteur contrainte

Soit dF la force qui exercée sur la facette . Le vecteur contrainte T(M) sur la

facette 'dS en M, s’exprime par :

T(M) = dF /dS



. A , , . d
Le vecteur contrainte peut ectre decompose suilvant n en ses composantes normale o

et tangentielle T.
T(M) =6 + 7

T(M,#)

’
1

— . =n.T(M,#)

2. Formule de Cauchy

2.1. Equilibre d’un tétra¢dre

Soit MABC un tétraédre infiniment petit établi sur les axes x,y et z. Soit . de

composantes (M, Ny, N;) la normale unitaire au plan ABC et dS laire du triangle
ABC.

k

n,dST(M,=i)

. - (“ ]
n,dST(M,=j) ds T(M,#)

n. dS T(M,=k)

Les fonctions du produit vectoriel nous permettent d’écrire :
—_— —_— N
AB N AC = 2dSn

= 2dSn,7 + 2dSn,j + 2dSn,k

= (MB — MA) A (MC A MA)
En développant, on obtient :
AB ANAC = 2 aire (MBC)T + 2 aire (MAC)] + 2 aire (MAB) k
On en déduit par identification :
aire(MBC) = n,dS, aire(MAC) = n,dS, aire(MAB) = n,dS
Sous les forces qui lui sont appliquées, I’équilibre du tétracdre s’écrit :

dS T(M, ) + n, dST(M, 1) + n, dST(M,—}) + n, dST(M,—k) = 0
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En divisant par dS, on obtient "équation sous forme matricielle :
{TM, )} = [TM,7) TM,]) T(M,k)]{n}
2.2. Tenseur des contraintes
De I’équation ci-dessus, on peut écrire la formule de cauchy :
{TM,m)} = [e(M){n}

Ou [6(M)] est le tenseur des contraintes de Cauchy en M. Ses composantes dans

le repere (1,7, k ) sont :

Oyx Oyy Oyz

[O-xx Oxy O-xz]
Ozx Ozy Oz

Le tenseur des contraintes de Cauchy peut étre représenté par :

T(M, k) Tff

T(M,7)
—> 0,

v

3. Equations d’équilibre

En désignant par f les efforts volumiques appliquées au point de coordonnées
. = 15 .1 . . .

(x,¥,z) du solide, pat ¥ 'accélération de ce point et par p la masse volumique du

matériau, la projection sur X de la somme des forces appliquées au parallélépipede

infiniment petit, de centre M et de cotés dx, dy et dz s’écrit :

— 0, (X,y,2)dydz + 0, (x + dx,y,z)dy dz

— Oxy(X,¥,2)dx dz + 0y, (x,y + dy,z) dx dz

—0,,(x,y,z)dx dy + 0,,(x,y,z + dz)dx dy
+ f,dxdydz

On obtient apres simplification I’équation de la dynamique :

00,y N 005y N 00,
d0x ay 0z

+ fx = PYx

En procédant de la méme facon pour les axes y et Z, on obtient :
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L’équilibre en rotation du parallélépipede met en évidence la réciprocité des

contraintes tangentielles.

Oxy = Oyx; Oxz = Ozx ; Oyz = Ogzy

Le tenseur des contraintes est ainsi symétrique :

4. Contraintes principales et directions principales

Les contraintes principales sont les valeurs propres du tenseur des contraintes. 11
existe donc en M un repére orthonormé {ny,m;, N3} tel que sur les facettes

N4, Ny, N3 le vecteur cisaillement soit nul.
Les directions Ty, M, 13 sont les directions principales.

Le tenseur des contraintes principales s’écrit :

oqg 0 O
0 o O
0 0 o3y

Les contraintes principales sont donc solutions de 1'équation caractéristique :

P(0,) = det(a(M) —a,[1]) = 0

Soit :
Oxx — 01 Oxy Oxz
det Oyx O0yy — 03 Oyz =0
Ozx Ozy O0zz — 03



I’équation ci-dessus peut s’écrire :
—0,° + L,0,* — L0, + I3
Ou I3, I, I3 sont les invariants scalaires des contraintes. Ils sont donnés par :
I; = trlo] = 0yx + 0y + 04
=0y + 0, + 03

12 = %((tr[a])z - tT[O’]Z) = OxxOyy + Oxx0,; + Oyy0zz — O-xy2 - O-xzz - O-yz2
= 0,05 + 0,03 + 0,03
13 = OxxO0yy0zz + 2O-xyo-xzo-yz - O-xxo-yzz - O-yyo-xzz - O-ZZO-xyZ
= 010203
Les contraintes principales doivent vérifier la relation suivante :

0'120-220'3

En associant 2 chaque contrainte principale(oy, 05, 03)une direction principale

(ny,n3,M3), on peut écrire :
(lo] = o1 [ID{ny} = 0
(o] = o2 [IDnz} = 0
(o] = o3[IDng} = 0
5. Tenseurs sphérique et déviateur
Le tenseur des contraintes peut se décomposer en une somme de deux vecteurs :

- Un vecteur sphérique [gg]dans leuel toute contrainte normale est égale(tr[o]/3)

et toute contrainte tangentielle est nulle.

- Un tenseur déviateur [0} Japportant le complément de contraintes.

Ainsi, on écrit :




