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Chapitre 2 

Tenseur des contraintes  
L’élasticité s’intéresse principalement à l’étude des déplacements, des déformations 
et des contraintes générés dans les matériaux solides soumis à des sollicitations 
externes dans un domaine dit élastique. Dans ce domaine, le matériau déformé sous 
l’effet d’un effort externe reprend sa forme initiale une fois cet effort annulé. 

1. Coupure, facette et vecteur contrainte  

1.1. Coupure 

L’application de sollicitations mécaniques sur un solide génère des efforts internes. 
Ces efforts équilibrent les sollicitations appliquées sur la frontière extérieure du solide 
et assurent ainsi la conservation de l’intégrité du matériau. L’approche de la coupe 
fictive permet de déterminer ces efforts internes. 

Considérons donc un solide occupant un domaine (D). En chaque point 𝑀𝑀 de ce 
solide, il existe des forces internes que l’on peut déterminer en effectuant une 
coupure du solide, par une surface 𝑆𝑆, en deux parties 𝐴𝐴 et 𝐵𝐵. 

La partie 𝐴𝐴 est en équilibre sous l’action des forces externes qui lui sont appliquées 
et des forces internes réparties sur la coupure. 

 

Soit 𝑑𝑑𝑑𝑑 un élément infinitésimal de la surface 𝑆𝑆 autour su pont 𝑀𝑀. Le vecteur unitaire 
𝑛𝑛�⃗ , perpendiculaire en 𝑀𝑀 à S et dirigé vers l’extérieur de la partie 𝐴𝐴 est appelé facette 
en 𝑀𝑀. 

1.2. Vecteur contrainte 

Soit 𝑑𝑑𝑑𝑑�����⃗  la force qui exercée sur la facette 𝑛𝑛�⃗ . Le vecteur contrainte 𝑇𝑇(𝑀𝑀) sur la 
facette ⃗𝑑𝑑𝑑𝑑 en M, s’exprime par : 

𝑇𝑇�⃗ (𝑀𝑀) = 𝑑𝑑𝑑𝑑�����⃗ /𝑑𝑑𝑑𝑑 
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Le vecteur contrainte peut être décomposé suivant 𝑛𝑛�⃗  en ses composantes normale 𝜎𝜎 
et tangentielle 𝜏𝜏.  

𝑇𝑇�⃗ (𝑀𝑀) = 𝜎𝜎𝑛𝑛�⃗ +  𝜏𝜏 

 

2. Formule de Cauchy 

2.1. Equilibre d’un tétraèdre 

Soit 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 un tétraèdre infiniment petit établi sur les axes 𝑥𝑥,𝑦𝑦 et 𝑧𝑧. Soit 𝑛𝑛�⃗   de 
composantes (𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧) la normale unitaire au plan 𝐴𝐴𝐴𝐴𝐴𝐴 et 𝑑𝑑𝑑𝑑 l’aire du triangle 
𝐴𝐴𝐴𝐴𝐴𝐴. 

 

Les fonctions du produit vectoriel nous permettent d’écrire : 

𝐴𝐴𝐴𝐴�����⃗ ∧ 𝐴𝐴𝐴𝐴�����⃗ = 2𝑑𝑑𝑑𝑑𝑛𝑛�⃗  

           = 2𝑑𝑑𝑑𝑑𝑛𝑛𝑥𝑥𝚤𝚤 + 2𝑑𝑑𝑑𝑑𝑛𝑛𝑦𝑦𝚥𝚥 + 2𝑑𝑑𝑑𝑑𝑛𝑛𝑧𝑧𝑘𝑘�⃗  

                                                                  = �𝑀𝑀𝑀𝑀������⃗ − 𝑀𝑀𝑀𝑀������⃗ � ∧ �𝑀𝑀𝑀𝑀������⃗ ∧ 𝑀𝑀𝑀𝑀������⃗ � 

En développant, on obtient : 

𝐴𝐴𝐴𝐴�����⃗ ∧ 𝐴𝐴𝐴𝐴�����⃗ =  2 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑀𝑀𝑀𝑀𝑀𝑀)𝚤𝚤 + 2 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑀𝑀𝑀𝑀𝑀𝑀)𝚥𝚥 + 2 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑀𝑀𝑀𝑀𝑀𝑀) 𝑘𝑘�⃗  

On en déduit par identification : 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑛𝑛𝑥𝑥𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑛𝑛𝑦𝑦𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑛𝑛𝑧𝑧𝑑𝑑𝑑𝑑 

Sous les forces qui lui sont appliquées, l’équilibre du tétraèdre s’écrit : 

𝑑𝑑𝑑𝑑 𝑇𝑇�⃗ (𝑀𝑀,𝑛𝑛�⃗ ) + 𝑛𝑛𝑥𝑥 𝑑𝑑𝑑𝑑𝑇𝑇�⃗ (𝑀𝑀,−𝚤𝚤 )  +  𝑛𝑛𝑦𝑦 𝑑𝑑𝑑𝑑𝑇𝑇�⃗ (𝑀𝑀,−𝚥𝚥 )  +  𝑛𝑛𝑧𝑧 𝑑𝑑𝑑𝑑𝑇𝑇�⃗ (𝑀𝑀,−𝑘𝑘�⃗  )  =  0�⃗  
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En divisant par 𝑑𝑑𝑑𝑑, on obtient l’équation sous forme matricielle : 

{𝑇𝑇(𝑀𝑀,𝑛𝑛�⃗ )} = �𝑇𝑇(𝑀𝑀, 𝚤𝚤 )   𝑇𝑇(𝑀𝑀, 𝚥𝚥 )   𝑇𝑇(𝑀𝑀,𝑘𝑘�⃗  )�{𝑛𝑛} 

2.2. Tenseur des contraintes  

De l’équation ci-dessus, on peut écrire la formule de cauchy : 

{𝑇𝑇(𝑀𝑀,𝑛𝑛�⃗ )} = [𝜎𝜎(𝑀𝑀)]{𝑛𝑛} 

Où [𝜎𝜎(𝑀𝑀)] est le tenseur des contraintes de Cauchy en 𝑀𝑀. Ses composantes dans 

le repère (𝚤𝚤, 𝚥𝚥, 𝑘𝑘�⃗  ) sont : 

�
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦
𝜎𝜎𝑧𝑧𝑧𝑧 𝜎𝜎𝑧𝑧𝑧𝑧 𝜎𝜎𝑧𝑧𝑧𝑧

� 

Le tenseur des contraintes de Cauchy peut être représenté par : 

 

3. Equations d’équilibre 

En désignant par 𝑓𝑓 les efforts volumiques appliquées au point de coordonnées 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) du solide, par 𝛾⃗𝛾 l’accélération de ce point et par 𝜌𝜌 la masse volumique du 
matériau, la projection sur 𝑥𝑥 de la somme des forces appliquées au parallélépipède 
infiniment petit, de centre 𝑀𝑀 et de cotés 𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑 et 𝑑𝑑𝑑𝑑 s’écrit : 

− 𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥 +  𝑑𝑑𝑑𝑑,𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 
− 𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦 +  𝑑𝑑𝑑𝑑, 𝑧𝑧) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 
−𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 +  𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑧𝑧 +  𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑  

+ 𝑓𝑓𝑥𝑥 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 

On obtient après simplification l’équation de la dynamique : 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+  𝑓𝑓𝑥𝑥 = 𝜌𝜌𝛾𝛾𝑥𝑥 

En procédant de la même façon pour les axes 𝑦𝑦 et 𝑧𝑧, on obtient : 
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𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+  𝑓𝑓𝑦𝑦 = 𝜌𝜌𝛾𝛾𝑦𝑦 

𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+  𝑓𝑓𝑧𝑧 = 𝜌𝜌𝛾𝛾𝑧𝑧 

 

 

L’équilibre en rotation du parallélépipède met en évidence la réciprocité des 
contraintes tangentielles.  

𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑦𝑦𝑦𝑦 ;  𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑧𝑧𝑧𝑧 ;  𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜎𝜎𝑧𝑧𝑧𝑧 

Le tenseur des contraintes est ainsi symétrique : 

[𝜎𝜎]  =  [𝜎𝜎]𝑇𝑇 

 

4. Contraintes principales et directions principales  

Les contraintes principales sont les valeurs propres du tenseur des contraintes. Il 
existe donc en M un repère orthonormé {𝑛𝑛1����⃗ ,𝑛𝑛2����⃗ ,𝑛𝑛3����⃗ } tel que sur les facettes 
⃗𝑛𝑛1����⃗ ,𝑛𝑛2����⃗ ,𝑛𝑛3����⃗  le vecteur cisaillement soit nul. 

Les directions ⃗𝑛𝑛1����⃗ ,𝑛𝑛2����⃗ ,𝑛𝑛3����⃗  sont les directions principales. 

Le tenseur des contraintes principales s’écrit : 

�
𝜎𝜎1 0 0
0 𝜎𝜎2 0
0 0 𝜎𝜎3

� 

Les contraintes principales sont donc solutions de l'équation caractéristique :  

𝑃𝑃�𝜎𝜎𝑝𝑝� = 𝑑𝑑𝑑𝑑𝑑𝑑�𝜎𝜎(𝑀𝑀) − 𝜎𝜎𝑝𝑝[𝐼𝐼]� = 0 

Soit : 

𝑑𝑑𝑑𝑑𝑑𝑑 �
𝜎𝜎𝑥𝑥𝑥𝑥 − 𝜎𝜎1 𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎2 𝜎𝜎𝑦𝑦𝑦𝑦
𝜎𝜎𝑧𝑧𝑧𝑧 𝜎𝜎𝑧𝑧𝑧𝑧 𝜎𝜎𝑧𝑧𝑧𝑧 − 𝜎𝜎3

� = 0 
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L’équation ci-dessus peut s’écrire : 

−𝜎𝜎𝑝𝑝3 + 𝐼𝐼1𝜎𝜎𝑝𝑝2 − 𝐼𝐼2𝜎𝜎𝑝𝑝 + 𝐼𝐼3 

Où 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3 sont les invariants scalaires des contraintes. Ils sont donnés par : 

𝐼𝐼1 = 𝑡𝑡𝑡𝑡[𝜎𝜎] = 𝜎𝜎𝑥𝑥𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑦𝑦 + 𝜎𝜎𝑧𝑧𝑧𝑧 

= 𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3 

𝐼𝐼2 =
1
2

((𝑡𝑡𝑡𝑡[𝜎𝜎])2 − 𝑡𝑡𝑡𝑡[𝜎𝜎]2) = 𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝑦𝑦𝑦𝑦 + 𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝑧𝑧𝑧𝑧 + 𝜎𝜎𝑦𝑦𝑦𝑦𝜎𝜎𝑧𝑧𝑧𝑧 − 𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝜎𝜎𝑦𝑦𝑦𝑦2

= 𝜎𝜎1𝜎𝜎2 + 𝜎𝜎1𝜎𝜎3 + 𝜎𝜎2𝜎𝜎3 

𝐼𝐼3 = 𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝑦𝑦𝑦𝑦𝜎𝜎𝑧𝑧𝑧𝑧 + 2𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥𝑧𝑧𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝑦𝑦𝑦𝑦2 − 𝜎𝜎𝑦𝑦𝑦𝑦𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝜎𝜎𝑧𝑧𝑧𝑧𝜎𝜎𝑥𝑥𝑥𝑥2 

= 𝜎𝜎1𝜎𝜎2𝜎𝜎3 

Les contraintes principales doivent vérifier la relation suivante : 

𝜎𝜎1 ≥ 𝜎𝜎2 ≥ 𝜎𝜎3 

En associant à chaque contrainte principale(𝜎𝜎1,𝜎𝜎2,𝜎𝜎3)une direction principale 
(𝑛𝑛1����⃗ ,𝑛𝑛2����⃗ ,𝑛𝑛3����⃗ ), on peut écrire : 

([𝜎𝜎] − 𝜎𝜎1[𝐼𝐼]){𝑛𝑛1} = 0 

([𝜎𝜎] − 𝜎𝜎2[𝐼𝐼]){𝑛𝑛2} = 0 

([𝜎𝜎] − 𝜎𝜎3[𝐼𝐼]){𝑛𝑛3} = 0 

5. Tenseurs sphérique et déviateur 

Le tenseur des contraintes peut se décomposer en une somme de deux vecteurs : 

- Un vecteur sphérique [𝜎𝜎𝑆𝑆]dans leuel toute contrainte normale est égale(𝑡𝑡𝑡𝑡[𝜎𝜎]/3) 
et toute contrainte tangentielle est nulle.  

- Un tenseur déviateur [𝜎𝜎𝐷𝐷]apportant le complément de contraintes. 

Ainsi, on écrit : 

[𝜎𝜎] = [𝜎𝜎𝑆𝑆] + [𝜎𝜎𝐷𝐷] 

[𝜎𝜎] = �
𝑡𝑡𝑡𝑡[𝜎𝜎]

3
� + ([𝜎𝜎] − [𝜎𝜎𝑆𝑆])  

 

 

 


